agenatio

vision sysfem specialists

PXC200 Precision Color
Frame Grabber

Copyright © 1995-1997, Imagenation Corporation. All rights reserved.
Imagenation Corporation

P.O. Box 276

Beaverton, OR 97075-0276

December 1997
P/N MN-200-02

Contents

1. Introduction 1
Precision Capture Hardwareccoooooieierieiiirieieieei e
Video Inputs and FOrMALS.........ooviiiiiiiiiiiie e
Video Capture Modes and ReSOIUtIONcoovviiiiiiiiiiiiiiiiiee e

Image Capture MOAESoovviiiiiiiiiiiii e
Capture ReSOIULION.......oooiiii s
Real-Time Image Data Transferoueuvuiiiiiiiiiniie e
PCI BUS Master DeSIgN........ccooiiiiiiiiiiiiiiiiiii e
Selectable Destination for Image Captures..........cccceevvvvvvivcnnenennn.
[/O FRALUIES ...ttt
THQOET INPUL .. 6
OPLONAI IO .o 7
Programming Libraries and DLLSccooveiiiiiiiiiiiiii e 7
The PXCVU Program ... s
ULIILY PrOogramsS........ouuueieioi et e e e e e e e aeneees
PXCREV ..ttt e e e e e e e e e e e e e s 9
VGACOPY ittt 9
N XL S DS, .. ettt et e e e e e e e e e e e s

Imagenation

2.

Installing Your Frame Grabber. 11
Do You Need a Cable? ... 11
Standard PCl and CompactPCl Cables..........cccoeeveviiiiiiiiiiiiiiiinns 11
PC/104-Plus Cables........coooiiiiiiiiiiie e 12
Installing Your Boardcoooeuiiiiiiiiiiiiiien e 12
Installing the SOftware ... 15
DOS, DOS/4GW, and Windows 3.1 Software Installation 15
Windows 95 Software Installation.................cccceieiiiiininiiinininenee, 18
Windows NT Software Installation................cccceeeieiiininiinnnnn 20
PXC200 Software DIr€CtOresS.........ccevevuiueuininiiianeeee e eeeeeeeeieeens 22
TroubleShOOtINGccoo e 22
Error LOading DLLuveeiiiiie e 23
Error Loading VXDccooviiiiiiiiiieiaie et e 23
Problems Running PXCVU or PXCREVcooiiiiiiiiiiiineen. 23
Slow Video Display Performance..........ccccoeveeeneeeeieieieieieieiiiiienens 25
Windows Hangs or Crashes on BOOtcceieiiiiiniiiiiiieieeee, 25
Windows NT-Specific Problemscccccoiiiiiiiiiies 25
TECNNICAl SUPPOIT....eiiiee e eeienees 26
The PXCVU Application. 29
Setting Up PXCVU ..ot 29
Starting PXCVU ... e 30
Running PXCVU with More Than One Frame Grabber 30
USING PXCVU i 31
Programming the PXC200 33
Library Organization..............cuuuuiiiiininii e 33
Operating System SPECITICSc.uuuviuriiiiiiar e 34
DOS Programming........cccueueueurmmmaniananeeeeeeaeeeeeeeeeeesessnnnnn e eeas 34
WiNdows 3.1 Programmingoooreeeeee e eeeeieieiiiien e 36
WiNdows 95 Programmingc.cueeeeeeumuemimiianeneneeeeeeeeeeeeeeneieeens 37
Windows NT Programmingcooooeeeeeeeeoieieieeiiiiiiin e 39

Programming in a Multithreaded, Multitasking Environment.... 39

Contents

Programming Language SPecCifiCSccoovviiiiiiiiiiiiiiiiiiiie e, 40
Programming iN C......oi oo 41
Visual BasiC Programmingoeooooneeeeeeeeeeeeeeeeieieieiin e 41

Typical Program FIOW ..o 43

Initializing and Exiting Libraries.............iiiiiiiiii e 44
C and WINAOWS ProgramsS.............eeoeoreree e e e e eeeeieieieieen e 44
C and DOS Programs..........ceueeeveeuiiimimianaaeaee e aeee e eeeeeeeennnnnnnnnes 45
Visual Basic and WIindows Programs...........ccceeeeeeeeeeeeeeeeeeeenennnns 45
Troubleshooting OpenLibrary() ..o 46

Requesting Access to Frame Grabbers.........cccccooieiiiiiince, 4

Setting the Destination for Image Captures.........cccccvvvviiiiieneeeeeeeenn. 47
Allocating and Freeing Framescccoovviiiiiiiiieiiceeiei e 48
Sending Images Directly to Another PCI Device............ccccu...... 50

Grabbing IMAgeS.......uueiiii e 51

Selecting VIdeo INPULS.........uveeiiiiii e 52

Counting FIEldSo 54

Adjusting the VIideo IMageouuuuuiiiiiiiieeee e 54
Setting Contrast and Brightness.............coooiviiiiiiiiiiiiiiiii e 54
Setting Hue and Saturationc.ccccceeeeiiiiiiieiiiiii e 55
Setting the Video Level...........o.uiiiiiii 56
Setting Luma Controls ... 56
Setting Chroma ControlS. ..., 57

Scaling and Cropping IMAJESc.uuuururiiiieeeeee e ee e 58
SCaliNG IMAGES ... 59
CroppiNg IMAQJESevvueiiitai e ee ettt e e e e eeeeeeeeaes 59

Timing the Execution of FUNCLIONSuvuiiiiiiiiiiieeieieeeeeeeieiiie 60
QuEUEd FUNCLIONS ...t e 61
Synchronizing Program Execution to Videocccceeveeeennes 63
Purging the QUEBUE.........oooiiii s 63
Immediate FUNCHIONSuueiie e 63
Function Timing SUMMANYooiiiiineieiee e 64

Using Flags with Function Calls...............uiiiiiiiinineeiies 66

DIGItal 1O ... 66
Controlling the INput LINEScoooiiiiiiiiicieiee e 67
Controlling the OULPUL LINEScuvvviiiiiiieieiee e 71

Horizontal and Vertical Sync Drive Signals...........ccceviviiiiiiiinnennn. 73

Imagenation

vi

Error Handlingooooe oo 74
Reading Frame Grabber Information............ccccoiiiiiiiiie 74
Board Revision NUMDET..........iiiiiii e 74
Hardware Protection KeY ... 75
Serial NUMDET ... 75
Frame Grabbing and PCI Bus Performancecccccoeveeiviiiiinnnnn. 75
Accessing Captured Image Data............eeeeeiiiiiiieeneeeeie e 76
Frame and File INPUt/OULPUL.............uvuiiiiiiiiiiiee e 77
BIMP FIlES ..ottt ettt 77
BINAry FIlESo 78
Using the Video Display DLLc.coooiiiiiiiiiiiiiiiie e 78
. PXC200 Library Reference 81
. Frame Library Reference...................... 121
. The VGA Video Display Library 139
Initializing and Exiting the Librarycccccoooies 140
Entering and Exiting VGA Graphics Mode.............ccccoeeviviviinnnnnns 140
Displaying VGA Text and GraphiCs..........cceeueeeeieeeeieiiieieiiiiiiiiiinens 141
VGA Memory AdAreSSiNgcooeeeeeeeeeieeeeeeeeeeeiii e 142
Menu Creation, Configuration, and Display.........c.cccoeeveeiiiiiiinenne. 142
Menu Structures and TYPESooovviiiiiiiiiiiiii e 143
FUNCLION REFEIENCE ... 145
.Cablesand Connectors 157
Standard PCl and CompactPCl Cables...........cccceviviviiiiiiiiiiienn, 157
S-VidE0 CONNECIONuiieiiiiaiee e e 158
26-PIiN D CONNECION .. .o ii it eeneaens 158
Connecting the +12V OULPUL.........uvveeiiiiiiieree e 159
PC/104-Plus Cablesoooviiiiiiiiiee e 159
20-PiN CONNECION ...ttt 160
24-PiN CONNECION ...ttt eeee e aeneanens 161

Contents

B. Hardware Specifications 163
Standard FEAtUIES..........cuuuiii i e 16.
Optional Control Packageeuiiiiiiiiieeieieeeeeei e 164

C.BlockDiagram i 167

INdeX. 169

vii

Imagenation

viii

Introduction

The Imagenation PXC200 frame grabber features precision video capture
hardware for applications that require high color accuracy. Features of
the precision hardware design include:

High color accuracy with low pixel jitter

PCI bus master design for real-time image capture to system
memory or directly to the VGA display

Image capture resolution up to full-size: 640 x 480 (NTSC) and
768 x 576 (PAL and SECAM)

Horizontal and vertical cropping and scaling of captured images
to minimize system memory and bus bandwidth requirements
Common color output formats, including YCrCb, RGB, and

Y8 (grayscale)

Continuous, software-initiated, and triggered image captures
Four multiplexed composite video inputs (one input can be
S-video) with automatic video format detection of NTSC and
PAL/SECAM formats

Digital trigger input

+12V output for powering cameras or other devices

Imagenation

The optional Control Package for the PXC200 extends the input/output
capabilities to include the following:

Four general-purpose TTL-level input lines and four general-pur-
pose TTL-level output lines

Vertical and horizontal sync outputs for genlocking a video
source

Strobe inhibit during CCD transfer time for reliable image cap-
ture with strobes

All four video inputs can accept S-video or composite video
Faster switching between multiplexed video sources with faster
video format detection

DC restore on all four video inputs for instant switching between
genlocked video sources

The PXC200 is available in three hardware configurations:

PCI bus, short card—for typical desktop PC systems
PC/104-Plus bus—for embedded-systems applications based on
the PC/104-Plus format

CompactPCIl—for industrial applications based on the Compact-
PCI format, which combines the standard PCI electrical specifi-
cations with a Eurocard physical format

To make it easy to tap these hardware features, the PXC200 includes an
elegant software interface that supports developing applications for
16-bit DOS, Watcom 32-bit DOS/4GW, Windows 3.1, Windows 95 and
Windows NT:

C libraries for building DOS applications

DLLs for building Windows applications

DOS VGA Video Display library for building a menu-based user
interface

Sample DOS and Windows source code

PXCVU—a DOS image capture application

Chapter 1 Introduction

This chapter will give you an introduction to these features. More
detailed technical information on features is include@hapter 4Pro-
gramming the PXC20®n page 33.

Precision Capture Hardware

The design of the PXC200 video capture hardware produces high color
accuracy and low pixel jitter:

Grayscale noise—1.0 LSB RMS maximum

Pixel jitter —+4 ns maximum

This accuracy makes PXC200 frame grabbers ideal for demanding scien-
tific and industrial applications.

Video Inputs and Formats

The PXC200 frame grabber handles multiple camera inputs and video
formats:

Connect up to Four CamerasSwitch between camera inputs in soft-
ware. All four inputs can accept composite video signals, and video
input 1 can be used for S-video; with the optional Control Package, all
four video inputs can be used for S-video.

A PXC200 frame grabber automatically synchronizes to the selected
video source. For very high-speed switching between camera inputs,
the optional Control Package provides DC voltage restoration for all
video inputs and horizontal and vertical sync output signals for gen-
locking cameras. Even for non-genlocked video sources, the Control
Package cuts the time for synchronizing to a new source from about
2.5 seconds to less than 0.5 seconds.

Imagenation

Use NTSC, PAL, or SECAM Video FormatsPXC200 frame grab-
bers support the 60 Hz North American NTSC color and RS-170
monochrome formats, and 50 Hz European PAL and SECAM color
and monochrome formats.

Video Capture Modes and Resolution

When you capture images with a PXC200 frame grabber, you can specify
how you want to start the capture process, and whether you want to work
with all or with just a subset of the total image data.

Image Capture Modes

There are three ways to capture images with a PXC200 frame grabber:

Software-initiated grab. On a command from an application pro-
gram, the board grabs a single frame or field.

Triggered grab. The board waits for an external trigger and then
grabs the frame.

Continuous acquire.In this mode, the board grabs one image after
another. Continuous acquire is useful for applications that need to
watch for changes between successive images, and for sending video
data directly to other PCI devices.

With any of these modes, you can start the capture at the next field in the
incoming video signal, or you can specify that the capture will start with
field O or field 1.

Chapter 1 Introduction

Capture Resolution

PXC200 frame grabbers use a crystal-controlled pixel clock to sample
horizontal lines of video at 14.32 MHz for NTSC or 17.73 MHz for PAL/
SECAM. At these frequencies the frame grabber acquires more pixels
per line than are required for the standard video formats and then uses
interpolation to reduce the number of pixels to the specified value. On a
typical display monitor with a 4 x 3 aspect ratio, a 640-pixel horizontal
resolution results in approximately square pixels for images in NTSC
video mode; a 768-pixel horizontal resolution results in square pixels for
images in PAL and SECAM video modes; and a 720-pixel horizontal res-
olution supports the rectangular video pixels of conventional video dis-

plays.

If you don’t need to work with all of the image data, you can further scale
the image horizontally and vertically. You can also crop the image hori-
zontally and vertically, retaining just a rectangular subset of the image.
By transferring only a subset of the image, you save memory and band-
width on the bus, leaving more of both resources available to other parts
of your application and to other applications.

Common color formats are supported for output, including YCrCb, RGB,
and Y8 (8-bit grayscale).

Real-Time Image Data Transfer

The PCI bus master design of the PXC200 frame grabber lets you
achieve real-time performance for captures to main memory or directly to
the display.

PCI Bus Master Design

The bus master design of the PXC200 frame grabber lets the frame grab:
ber directly control the transfer of image data to main memory or to

Imagenation

another PCI device, such as a display controller. While the frame grabber
is transferring data, the main CPU is free to run other parts of your appli-
cation or other applications.

Data transfers can take advantage of the maximum 132 MB per second
burst transfer rate of the PCI bus. Although actual throughput is typically
well below the maximum burst rate, a properly-designed system can sup-
port real-time transfer and display of full-size, 8-bit-per-pixel video

image data. At 16 or 24 bits per pixel, you might not be able to achieve
real-time display of full-size images, depending on the design of the sys-
tem.

Selectable Destination for Image Captures

You can choose the destination for the image capture data:

A buffer in main memory. The data is transferred via direct memory
access (DMA) to a buffer in the computer’s main memory. The trans-
fer is fast, and the data is available in memory for further processing.

Another memory-mapped deviceThe data is transferred via DMA
directly to another PCI device. For example, some PCl VGA cards
support such transfers, which can be used to display live video.

/O Features

Trigger Input

PXC200 frame grabbers have an external trigger input that can be used to
trigger an image capture. A simple push button switch attached to this
input can be used like a camera shutter button. The trigger input can be
programmed to respond to either low or high logic levels, or to rising or
falling edges.

Chapter 1 Introduction

Optional 1/0O

The optional Control Package expands the I/O capabilities of the
PXC200 with the following:

Digital /0 —Four general-purpose input lines, software programma-
ble as separate triggers, plus four general-purpose output lines, which
can be used as triggered or software-programmable strobes. These
eight 1/O lines replace the single trigger input on the standard
PXC200.

Sync Signals—Vertical and horizontal sync outputs, which can be
used to genlock a video source. The PXC200 can resynchronize much
faster when switching between genlocked video sources.

Strobe Inhibit—You can specify a holdoff period for firing strobes to
prevent the strobes from firing during a camera’s inter-line transfer.
Inhibiting the strobes during the CCD transfer time gives you more
reliable image captures.

S-Video—All four video inputs can accept S-video or composite
video; on the standard PXC200, only one of the video inputs can
accept S-video.

Programming Libraries and DLLs

For custom applications, the PXC200 software includes support for
writing your own frame grabber programs. The library and DLL func-
tions take care of the details of low-level hardware control for you, let-
ting you concentrate on getting your application working.

C Libraries for DOS—Write 16-bit DOS programs using the 16-bit
library with Borland, Microsoft, or Watcom C compilers, or write
32-bit DOS programs using the Watcom DOS/4GW library.

Imagenation

DLLs for Windows— Write programs for Windows 3.1,

Windows 95, and Windows NT with C compilers from Borland and
Microsoft, or with Visual Basic. The PXC200 DLLs are standard
Windows DLLs, and you should be able to use them with most Win-
dows development tools that can make calls to Windows DLLs.

DOS VGA Video Display Library—Use the Video Display library

to create a menu-based user interface for your 16-bit DOS and 32-bit
DOS/4AGW applications that allows you to simultaneously display
graphics and text.

Sample source code-Sample source code is provided, for both DOS
and Windows, to show you how to use various features of the libraries
and DLLs.

Chapter 4Programming the PXC20@n page 33, describes the main
features of the PXC200 hardware and software and how to use them to
build applications. For reference information on all PXC200 library func-
tions, see€Chapter 5PXC200 Library Referencen page 81, an@hap-

ter 6,Frame Library Referengen page 121. The DOS VGA Video
Display library and its functions are describecCimpter 7The VGA

Video Display Libraryon page 139.

The PXCVU Program

The PXC200 software includes a DOS frame grabber application called
PXCVU. Using PXCVU, you can capture images, save images to disk,
and adjust many of the image capture features of a PXC200 frame grab-
ber—all without writing a single line of code. For more information, see
Chapter 3The PXCVU Applicationon page 29.

Chapter 1 Introduction

Utility Programs
The PXC200 software also includes several utility programs.

PXCREV

If you need to contact Imagenation Technical Support, you'll be asked
for your board’s revision number. PXCREYV is a DOS program that dis-
plays the revision number for any frame grabbers it finds in your system.
You must run this program from DOS, not from a DOS window in Win-
dows.

VGACOPY

VGACOPY is a test program that lets you evaluate the performance of
your computer for grabbing images and copying the data to the VGA dis-
play in DOS. For similar tests in Windows, see the Windows sample pro-
grams PXCDRAW1 and PXCDRAW?2.

Next Steps...
For... See...
Installing your PXC200 frame Chapter 2|nstalling Your Frame
grabber Grabber, on page 11
Operating your PXC200 with the Chapter 3The PXCVU Applica-
PXCVU program tion, on page 29
Writing your own frame grabber Chapter 4Programming the
applications PXC20Q on page 33
Connector and cabling specifica- Appendix A,Cables and Connec-
tions tors, on page 157

Imagenation

10

Installing Your Frame
Grabber

Do You Need a Cable?

Standard PCI and CompactPCI Cables

The BNC composite video connector and the S-video connector on the
standard PCI and CompactPCI configurations of the PXC200 board let
you attach up to two video sources. Additional video sources (you can
connect a total of four), a trigger input, and a +12V power source are also
available by using the 26-pin D connector. If you have the optional Con-
trol Package, the 26-pin D connector also gives you access to the addi-
tional digital 1/O lines and sync signals. To use the 26-pin connector,
you'll need a cable with the correct mating connector and pinouts. For
information on making cables, sAppendix A,Cables and Connectars

on page 157.

11

Imagenation

PC/104-Plus Cables

You'll need cables to attach to the connectors on frame grabbers with the
PC/104-Plus configuration. For information on making cables, see
Appendix A,Cables and Connectgren page 157.

Installing Your Board

12

Follow the instructions below to install your board:
1 Turn off and unplug your computer, then remove its cover.

Caution

Static electricity can damage the electronic components on the
PXC200 board. Before you remove the board from its antistatic
pouch, ground yourself by touching the computer’'s metal back
panel.

2 Install the PXC200 board as follows:
For a standard PCI-bus board:

a Locate an unused PCI expansion slot that is enabled for bus master-
ing. On some systems, you must enable a PCI slot for bus master-
ing by using a switch or jumper on the system board, or by
changing the BIOS settings. Refer to the manual that came with
your computer for more information.

b Remove the cover plate. Save the screw.
c Insert the PXC200 board into the slot and seat it firmly.

d Secure the board’s cover plate using the screw you saved.

Chapter 2 Installing Your Frame Grabber

0oo0o0000O0OO0CO

o
o
o
o
o
o
o
o

0000000O0COC

COMP

S-VIDEO

If you want to use the +12V output on the 26-pin connector, attach
a power connector from your PC’s power supply cable to the J4
connector on the board. The J4 connector accepts the same type of
power supply connector used for floppy disk drives. If you don’t
want to use the +12V output, you can skip this step.

For a CompactPCI board:

a

b

Locate an unused slot in your chassis that supports DMA bus mas-
tering. The first two or three slots next to the CPU slot typically
support bus mastering.

Insert the PXC200 board into the slot, seat it firmly, and tighten the
holding screw.

For a PC/104-Plus board:

a

b

Set the four-position rotary switch on the PXC200 board to an
unused number. Each PC/104-Plus plug-in module must be setto a
unique number. On some PC/104-Plus systems, the board closest tc
the CPU must be set to zero, the next board must be set to one, anc
SO on.

Insert the PXC200 board into the connector and seat it firmly.

Following the instructions below, connect your board to the video
input and, optionally, to other 1/O:

For a standard PCI-bus or CompactPClI-bus board:

BNC and S-video connectorsConnect your video source to the
S-video connector or to the composite video BNC connector (see
diagram at left). The composite connector is video input 0, and the
S-video connector is video input 1.

26-pin D connector.If you're using the 26-pin D connector, con-

nect your cable to that connector. If you need to purchase or make a
cable, seé\ppendix A,Cables and Connectgren page 157.

13

Imagenation

14

For a PC/104-Plus board:

Attach your cable to the connector on the PXC200 board. For
information on making cables, sAppendix A,Cables and Con-
nectors on page 157.

Replace the cover on the computer, plug it in, and turn on the power.

This step applies to Windows 95 onlywWhen you restart your sys-

tem, you might see the message “Found new multimedia PCI device,”
and theAdd New Hardware Wizand displayed. If this happens, fol-
low the steps below:

a Insert theWindows 95PXC200 software installation disk in the

f

drive.
In the wizard, click the Have Disk button.

In thelnstall from Diskdialog, specify the drive letter for the
floppy disk drive and click OK.

You should see a single optid®X Precision Frame Grabber
listed in the wizard.

SelectPX Precision Frame Grabbend click Next.

Click Next again to let Plug and Play complete the installation.
You should see a message that Windows hasn’t finished installing
the necessary software. You'll install the software in the next sec-

tion.

Click Finish.

That completes the hardware installation. Next, you'll install the
PXC200 software.

Chapter 2 Installing Your Frame Grabber

Installing the Software

PXC200 frame grabbers can be used with DOS, DOS/4GW,
Windows 3.1, Windows 95, and Windows NT. Refer to the appropriate
section below for the operating system you are running.

DOS, DOS/AGW, and Windows 3.1 Software
Installation

1 This step applies only to DOSIf you're not using DOS, skip to the
next step. The frame grabber needs a vacant 4 KB block of system
memory in segment 0xDOOO or in segment OXEO0O. The 4 KB block
of memory must be aligned on a 4 KB boundary; that is, it must be of
the form OxC?00-0OxD?FF or OXE?00-OxE?FF, where? is the same
hexadecimal digit in both the beginning and ending numbers of the
range. For example, 0XD0-0xD2FF or OXEAOO-OXEAFF.

To make a memory block available for the frame grabber:

a Make sure the block is not used by any other hardware devices.
You can use the Microsoft diagnostics program MSD to display
memory usage. (MSD comes with DOS and Windows.)

b Modify the entry in CONFIG.SYS for your memory manager to
prevent it from using the block. For example, if you are using
EMM386, and you want to use OXEO0O-OXEOFF for the frame
grabber, ada=e000-e0ff to the end of the EMM386.EXE
entry in your CONFIG.SYS:

device=c:\dos\emm386.exe noems x=e000-eOff

If you're using another memory manager, like QEMM or
386MAX, consult your manual.

15

Imagenation

16

2 Insert theDOS/Windows 3.linstallation diskette in the floppy drive.

3 The diskette includes two installation programs, one for DOS and
another for Windows. The DOSISTALL.EXEprogram install®nly
the DOS and DOS/4GW software, not the Windows software; the
WindowsSETUP.EXEprogram installs all three. Decide which instal-
lation program you want to use, and follow the appropriate instruc-
tions below:

DOS and DOS/4AGW only

a

At the DOS prompt, type (substitute the appropriate drive letter for
“a”) a:\install and press Enter.

When the INSTALL program has completed, reboot your com-
puter.

After rebooting your system, you can use the PXCVU program to
verify that your frame grabber is correctly installed. For instruc-
tions on running PXCVU, sééhapter 3The PXCVU Application

on page 29. If an error message appears when you try to start
PXCVU, seelroubleshootingon page 22.

Windows, DOS, and DOS/4AGW

a

From the Program Manager in Windows, choose the File menu and
select Run.

In the Command Line box, ty@e\setup , and click OK.
When the SETUP program has completed, restart Windows.
Setup creates a new program group caixq.

After restarting Windows, you can run one of the PXCDRAW

sample programs to verify that your frame grabber is correctly
installed. The sample programs are in the c:\pxc2\samples\win16

Chapter 2 Installing Your Frame Grabber

directory. If you have problems running the sample programs, see
Troubleshootingon page 22.

Changes to System Files for DOS, DOS/4GW, and
Windows 3.1

The installation programs will, at your option, modify your
AUTOEXEC.BAT and SYSTEM.INI (SETUP only) files. The changes
are listed below so that you can make your own modifications, if you pre-
fer. The installation programs do not look for their own modifications; if
you run the installation programs more than once, don't let them modify
your system files unless you have removed the previous modifications.

AUTOEXEC.BAT Changes for DOS, DOS/4GW, and Windows 3.1

REM Imagenation’s Modifications

set path=c:\pxc2\bin;%path%

set imagenation=c:\pxc2

REM Imagenation’s Modifications End

Adding c:\pxc2\bin to your PATH makes the samples and utilities easier
to execute. The IMAGENATION environment variable specifies the
location of files required by the PXCVU application. PXCVU won’t run
unless this variable is correctly defined.

After your AUTOEXEC.BAT file is modified, you must reboot your
computer for the changes to take effect.

SYSTEM.INI Changes for Windows 3.1

[386EnNh]

; Imagenation’s Modifications
device=c:\pxc2\bin\pxc2.vxd

; Imagenation’s Modifications End

The PXC200 Windows Virtual Device Driver (VXDRXC2.VXD is
added to the [386Enh] section. The VxD will be loaded only when you

17

Imagenation

18

start Windows. The PXC200 DLIBXC2_16.DLL requires this VxD;
the DLL will not run unless the VxD is installed. After running Setup,
you must restart Windows to load the VxD.

Windows 95 Software Installation

1 If you previously installed the Windows 3.1 software, you must edit
the [386Enh] section of the SYSTEM.INI file to remove the lines that
load the VXD PXC2.VXD Otherwise, when you run Windows 95, the
system will try to load the VxD twice. For more information, see
SYSTEM.INI Changes for Windows,3h page 17.

2 Put theWindows 95installation disk in the floppy drive.

3 Click the Start button and click Run.

4 For the name of the program, tygésetup and click OK.

5 Follow the instructions in the Install wizard to complete the installa-
tion.

Setup creates a new program group caixq.
When you have competed installing the software, you must reboot
Windows 95 before the drivers that you have installed will be accessi-
ble.

6 Click the Start button and click Shut Down.

7 In the Shut Down Windows dialog, cli¢kestart the computerand
click Yesto restart Windows 95.

After restarting Windows, you can run one of the PXCDRAW sample
programs to verify that your frame grabber is correctly installed. The

Chapter 2 Installing Your Frame Grabber

sample programs are in the c:\pxc2\bin directory. If you have prob-
lems running the sample programs, $esubleshootingon page 22.

Windows 95 Registry Changes

If you let the Setup program create a registry entry for the PXC200
driver, and you later need to uninstall the driver, you must edit the
Windows 95 Registry by using the REGEDIT.EXE program in your
Windows 95 directory.

The installation program adds the following key to the Windows Regis-
try:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\VxD\PXC2

The value assigned to this key is:

StaticVxD. A string key that contains the complete path of the VxD
file, such as:\pxc2\bin\pxc2.vxd

When you remove the registry entry, Windows will no longer automati-
cally load the VxD. When you run a frame grabber program, the DLL
will attempt to locate the VXD and load it dynamically. If your programs
have problems locating the VxD, copy the VxD to the Windows SYS-
TEM directory.

Although loading the VxD dynamically adds about 1/2 second to pro-
gram startup time, it ensures that the VxD gets unloaded when the pro-
gram terminates, de-allocating all frame grabbers. This can be
particularly useful during program development when programs might
crash and leave a frame grabber allocated.

19

Imagenation

20

Windows NT Software Installation

1 To install the driver, you must be logged in as Administrator or have
equivalent access.

2 Put thewindows NT installation disk in the floppy drive.
3 Click the Start button and click Run.
4 For the name of the program, tygésetup and click OK.

5 Follow the instructions in the Install wizard to complete the installa-
tion.

The drivers can be configured to start automatically at boot time or to
be manually controlled. The installation program will default to load-
ing the driver automatically at boot time. If you choose to manually
load and unload the driver, the driver operation can be controlled
through the Devices icon in the Windows NT Control Panel. You can
also manually start the driver by entering the following command at
the command prompt:

net start pxc200

To stop the PXC200 driver, enter this command at the command
prompt:

net stop pxc200
Setup creates a new program group caixq.
When you have competed installing the software, you must reboot

Windows NT before the registry entries you have made will take
effect.

Chapter 2 Installing Your Frame Grabber

6 Click the Start button and click Shut Down.

7 In the Shut Down Windows dialog, cliékestart the computerand
click Yesto restart Windows NT.

After restarting Windows, you can run one of the PXCDRAW sample
programs to verify that your frame grabber is correctly installed. The
sample programs are in the c:\pxc2\bin directory. If you chose to con-
trol the driver manually, you must start the driver before running the
sample programs. If you have problems running the sample programs,
seeTroubleshootingon page 22.

Windows NT Registry Changes

If you let the Setup program create a registry entry for the PXC200
driver, and you later need to uninstall the driver, you must edit the
Windows NT Registry by using the REGEDIT.EXE program in your
Windows NT directory.

The installation program adds the following keys to the Windows Regis-
try:

HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\PXC200
HKEY_LOCAL_MACHINE\System\CurrentControlSet
\Services\EventLog\System\PXC200

When you remove these registry entries, Windows NT will no longer
automatically load the driver, and you will be unable to use the PXC200
or any of its programs until you re-install the driver.

The number of PXC200 boards in a system is limited to four. If you need

to have more than four boards in a system, contact Imagenation Techni-
cal Support for assistance (Seechnical Suppoyion page 26).

21

Imagenation

PXC200 Software Directories

The installation programs create the LIB, BIN, and INCLUDE directo-
ries, and directories for the sample source code:

Directory Contents

c:\pxc2\lib DOS and Windows libraries.

c:\pxc2\bin Executable sample programs, DLLs, and drivers.

c:\pxc2\include Header files.

c:\pxc2\samples\dos @ DOS and Watcom DOS/4GW sample source
code.

c:\pxc2\samples\winl6 Windows 16-bit sample source code.
c:\pxc2\samples\win32 Windows 32-bit sample source code.

These directories are structured to make program execution, compiling,
and linking convenient.

You can run the Windows sample programs to control the frame grabber,
write BMP files, and run the timing tests (don’t forget to first restart Win-
dows to load the driver). The sample programs are PXCDRAW1 and
PXCDRAW?2.

Troubleshooting

22

This section contains troubleshooting information for the following:

e Error loading DLLs

» Error loading VxDs

* Running PXCVU or PXCREV

* Slow video display performance

* Windows hangs or crashes on reboot
* Windows NT-specific problems

Chapter 2 Installing Your Frame Grabber

Error Loading DLL

The system can't locate the PXC200 DLL. Either edit your PATH
environment variable to include the path to the PXC200 DLL (see
PXC200 Software Directoriesn page 22) or move the DLL to the
\WINDOWS\SYSTEM directory for Windows 3.1 and Windows 95, or
to the \WINDOWS\SYSTEM32 directory for Windows NT.

Error Loading VxD

When booting Windows 3.1 or Windows 95, you might see the error
“PXC2.VXD Requires a PCI compatible BIOS.” This means your BIOS
lacks the BIOS32 Service Directory feature of the PCI BIOS Specifica-
tion, Revision 2.0.

First, make sure you are using the version of the PXC2.VXD that came
with your PXC200. If you're using an older version, upgrade to the latest
version. If you still get this error message with the latest version of
PXC2.VXD, you'll need to upgrade your BIOS; contact the manufacturer
of your system for an upgrade.

Problems Running PXCVU or PXCREV

PXCVU and PXREV are DOS programs. You can'’t run these programs
in a DOS window in Windows. If your system hangs when you run
PXCVU or PXREV, this is the most likely cause.

If the program hangs when you start it, you might have an IRQ conflict or
a compatibility problem with the PCI chip set in your PC. Check for pos-
sible IRQ conflicts first. For the latest compatibility information, contact
Imagenation Technical Support (SBechnical Supporion page 26).

23

Imagenation

24

Make sure that you are excluding a 4 KB block of upper memory in your
CONFIG.SYS file (se&tep 1on page 15 of the installation instruc-
tions).

If you see the messagéis graphics card is not VESA compatiileen
you run PXCVU, you aren’t using a VESA-compatible display driver.
Check the documentation for your display controller board to see if a
VESA-compatible driver is available.

In PXCVU, if you see broken lines in the video (I&®owin a TV pic-

ture) the PCI bus is being overloaded or errors are occurring. Most Intel
486-based systems don’t have a PCI bus that is fast enough for the
PXC200 frame grabber. Run the VGACOPY program to check for errors
on the PCI bus.

If you haven't set the IMAGENATION environment variable, PXCVU
will display an error and won’t run. For information on the IMAGENA-
TION environment variable, seeJTOEXEC.BAT Changes for DOS,
DOS/4GW, and Windows 3.4n page 17.

PXCVU will fail to run if the file DOS4GW.EXE is not accessible
through your PATH environment variable.

If you see the messaddlocateVGA failed. Your video card may not sup-
port this mode.PXCVU might be using a video mode that your video
card doesn’t support under DOS. This is usually caused by the pixel-
depth setting. Try changing the setting, as follows:

a In a text editor, open the file c:\pxc2\pxcvu.ini.

b Locate the following line:

BitsPerPixel=16
¢ Change the number of bits per pixel from 16 to 8 or 24.

d Try running PXCVU again.

Chapter 2 Installing Your Frame Grabber

Slow Video Display Performance

When you're displaying video on the screen, the amount of memory on
the VGA display controller card can affect the performance. With some
display controllers, adding memory to the display controller will improve
the performance.

Windows Hangs or Crashes on Boot

This can be caused by an interrupt conflict. Check to make sure you have
an IRQ available and that no ISA device is trying to use the same IRQ
that any PCI device is trying to use.

Windows NT-Specific Problems

If you have trouble under Windows NT, it is most likely related to the
PXC200 device driver not loading. The following items are some com-
mon problems that can cause the driver not to load:

» Make sure you are logged in as Administrator, or have Administrator-
level access when you install the driver. If you installed the driver
without having this level of access, you must log in as Administrator
and re-install the driver.

 If during the installation you selected to manually load the driver, you
must start the driver every time you reboot Windows NT. To start the
driver, in the Windows NT Control Panel, click the Devices icon; then
click the PXC200 Driver; and then click the Start button.

Alternatively, you can start the driver from the command prompt by
executing this command:

net start pxc200

25

Imagenation

To stop the PXC200 driver, enter this command from the command
prompt:

net stop pxc200

» Check that the PXC200 driver is present and has been started. You can
do this by clicking the Devices icon in the Control panel. If the driver
is not present, check the Event Viewer to see if there was an error
when the driver attempted to load. There might be a conflict with
another device that is reported in the Event Viewer.

If Windows NT refuses to boot after the PXC200 drivers have been
installed, use the following method to recover:

1 When Windows NT reboots, you'll see the message “Press spacebar
NOW to invoke Hardware Profile/Last Known Good menu.”

2 Press the spacebar and pick the most recent configuration. This should
reverse the change to the Windows NT Registry, allowing you to boot
Windows NT and troubleshoot further.

Technical Support

26

Imagenation offers free technical support to customers. If the PXC200
board appears to be malfunctioning, or you're having problems getting
the library functions to work, please read the appropriate sections in this
manual. If you still have questions, contact us, and we’ll be happy to help
you.

When you contact us, please make sure that you have the following infor-
mation available:

» The revision number of your board. You can get this number by using
the PXCREV program in DOS or either of the PXCDRAW programs

Chapter 2 Installing Your Frame Grabber

in Windows. You must run the PXCREV program from DOS, not
from a DOS window in Windows.

* The operating system you're running: DOS, DOS/4GW,
Windows 3.1, Windows 95, or Windows NT.

» The compiler you're using, including the name of the manufacturer
and the version number (for example, Borland C version 5.0).

Voice: 503-641-7408 Toll free: 800-366-9131
Fax: 503-643-2458 CompuServe:75211,2640

Internet: support@Imagenation.com
www.imagenation.com

The Imagenation World Wide Web site (www.imagenation.com) always
has the latest versions of the Imagenation software. Check anytime for
software updates.

27

Imagenation

28

The PXCVU
Application

This chapter describes the PXCVU application program for DOS.
PXCVU is a basic frame grabber application that lets you control the fea-
tures of your PXC200 frame grabber without writing your own applica-
tion program. You can use PXCVU to capture frames or fields, write
frames to disk files, change the video source, and to set the brightness,
contrast, hue, and saturation.

Setting Up PXCVU

To run PXCVU, you must have the IMAGENATION environment vari-
able set to point to the directory containing PXCVU.HLP and
PXCVU.INI. PXCVU.HLP contains the text of the help screens you can
access from PXCVU. PXCVU.INI is an optional file that contains initial-
ization values for the application.

If you let the DOS Install or Windows Setup programs copy the files
from the diskette and make the required changes to your system files,
you're ready to run PXCVU. If not, sédJTOEXEC.BAT Changes for
DOS, DOS/AGW, and Windows 3oh page 17, for the required settings.

29

Imagenation

Starting PXCVU

30

Make sure you have a video source connected to your PXC200 board
before starting the PXCVU program.

To run PXCVU, execute the following at the DOS command linen(do
run PXCVU in a DOS window in Windows):

c:\pxc2\bin\pxcvu

If you see a display like that shown on page 31, the PXCVU program has
started correctly. Otherwise, s€®ubleshootingon page 22.

Running PXCVU with More Than One Frame
Grabber

If you have more than one frame grabber installed in your system,
PXCVU will use the first frame grabber that it finds. To specify a partic-
ular frame grabber, follow the command with the number of the frame
grabber:

c:\pxc2\bin\pxcvu n

Frame grabbers are numbered sequentially startingwt®. Due to the
nature of the PCI bus, the number of the frame grabber won’t necessarily
correspond to the PCI bus slot in which the frame grabber is installed. To
determine the correct numbaer,of each frame grabber, you'll just have

to try the PXCVU application with different values foand observe the
video displayed to identify the source.

Chapter 3 The PXCVU Application

Using PXCVU

The screen for the PXCVU application looks similar to the picture below:

v N

Video Window
[Image status: Acquiring video [Grab type: Frame [Starting field: Field 0 |
HELP ——— — Main Function Menu
Quit Programcccceeueee.
GRAB Set Grab Type.....ccocceeecineene
ACQUIRE Write Image File ...
INFO Read Image File

K Quit demo program and return to DOS J

If you have an active video source when you start PXCVU, the video
should appear in théideo Window as soon as you start the program.

The Status Line below the video window shows you the current selec-
tions for the image displayed in the Video Window, the type of grab, and
the starting field.

Definitions for functions keys are shown in the lower left corner:

* F1 HELP—Press F1 to get help on the currently-selected menu item.

» F2 GRAB—Press F2 to grab a frame using the current grab mode.

31

Imagenation

32

* F3 ACQUIRE—Press F3 to turn continuous acquire mode on or off.

* F4 INFO—Press F4 to display the hardware revision number and
serial number for the board, the image size, and the screen size.

TheMain Function Menu gives you more detailed control of the board.

A short explanation of the currently-highlighted menu item is shown at
the bottom of the screen. For help on a menu item, move the highlight to
the item using the arrow keys, and press F1 for Help. The features listed
in the menu are also explained in more detaitapter 4Programming

the PXC200on page 33.

U
X
O
N
o
o

ay1 buiwweuboid

Programming the
PXC200

This chapter describes how to write your own software programs for the
PXC200 using the functions provided in the PXC200 software libraries.
The chapter begins with an overview of how the libraries are organized,
followed by information about programming for specific operating sys-
tems, and about using specific programming languages. The remainder of
the chapter describes how to use the functions in the libraries to perform
the basic steps required to capture images and access the image data, plt
optional features you can use.

Library Organization

The PXC200 software is implemented as a set of libraries:

PXC200 Frame Grabber Library—Includes the functions you'll

use to control the frame grabber, including capturing images, setting
image resolution, switching video inputs, and setting image contrast,
brightness, hue, and saturati@napter 5PXC200 Library Refer-

ence on page 81, describes the syntax and other details for each func-
tion.

33

Imagenation

Frame Library —Includes the functions you'll use to access captured
image data and to read and write image fildgapter 6Frame

Library Referenceon page 121, describes the syntax and other details
for each function.

DOS VGA Video Display Library—A DOS-only library that

includes functions for controlling the VGA display, creating a menu-
style user interface, and drawing basic graphic primitives. This library
is not included in the current chapter, but is describ&hapter 7,

The VGA Video Display Libraypn page 139.

Operating System Specifics

Follow the guidelines in this section for compiling, linking, and running
PXC200 programs.

You can put c:\pxc2\lib and c:\pxc2\include in your environment vari-

ables for Microsoft, or in your TURBOC.CFG file for Borland, or in your
integrated development environment (IDE) search list.

DOS Programming

The following table summarizes operating system specifics for compil-
ing, linking, and running C programs under DOS. The DOS 16-bit library
supports the large memory model only.

34

Chapter 4 Programming the PXC200

o

DOS 16-bit Programs - S

: % 5

Header Files Libraries Runtime, Memory, and g =

Installation Requirements Sa

PXC200.H Borland: For required changes to ®
FRAME.H PXC2_LB.LIB AUTOEXEC.BAT, seeChanges

VIDEO.H* FRAME_LB.LIB to System Files for DOS, DOS/
VIDEO_LB.LIB* 4GW, and Windows 3.bn
Microsoft Ver. 6: page 17.
PXC2_L6.LIB
FRAME_L6.LIB
VIDEO_L6.LIB*
Microsoft Ver. 7+:
PXC2_LM.LIB
FRAME_LM.LIB
VIDEO_LM.LIB*

* The VIDEO files are described @hapter 7;The VGA Video Display
Library, on page 139.

Watcom DOS and DOS/4GW Programs

Runtime, Memory, and
Installation Requirements

Header Files Libraries

PXC200.H 16-bit: For required changes to system
FRAME.H PXC2_LW.LIB files, seeChanges to System Files
VIDEO.H* FRAME_LW.LIB for DOS, DOS/4GW, and

VIDEO_LW.LIB* Windows 3.1on page 17.

32-bit:

PXC2_FW.LIB

FRAME_FW.LIB

VIDEO_FW.LIB*

* The VIDEO files are described @hapter 7;The VGA Video Display
Library, on page 139.

35

Imagenation

36

Windows 3.1 Programming

The following table summarizes operating system specifics for compil-
ing, linking, and running C programs under Windows 3.1

Runtime, Memory, and
Installation Requirements

PXC200.H Borland: PXC2.VXD, PXC2_16.DLL,

FRAME.H ILIB_LB.LIB FRAME_16.DLL, and

VIDEO_16.H* ILIB_MB.LIB VIDEO_16.DLL needed for run-
ILIB_SB.LIB time. For VxD installation, see
VIDEO_16.LIB* DOS, DOS/4AGW, and

Header Files Libraries '

Microsoft: Windows 3.1 Software Installa-
ILIB_LM.LIB tion, on page 15.
ILIB_MM.LIB
ILIB_SM.LIB
VIDEO_16.LIB*

T The three libraries for each compiler are for different memory models:
large (ILIB_L), medium (ILIB_M), and small (ILIB_S).

* The VIDEO files are described ldsing the Video Display DLLlon

page 78.

Chapter 4 Programming the PXC200

Windows 95 Programming

The following tables summarize operating system specifics for com
ing, linking, and running C programs under Windows 95:

U
X
O
N
o
o

ay1 buiwweuboid

Windows 95 16-bit programs

Runtime, Memory, and
Installation Requirements

PXC200.H Borland: PXC2.VXD, PXC2_16.DLL,
FRAME.H ILIB_LB.LIB FRAME_16.DLL, and
VIDEO_16.H* ILIB_MB.LIB VIDEO_16.DLL needed for run-

ILIB_SB.LIB time. For VxD installation, see

VIDEO_16.LIB* Windows 95 Registry Changes

Microsoft: on page 19.

ILIB_LM.LIB

ILIB_MM.LIB

ILIB_SM.LIB

VIDEO_16.LIB*

T The three libraries for each compiler are for different memory models:
large (ILIB_L), medium (ILIB_M), and small (ILIB_S).

* The VIDEO files are described losing the Video Display DLlon

page 78.

Header Files Libraries '

37

Imagenation

38

Windows 95 32-bit programs

Runtime, Memory, and

Header Files Libraries .)
Installation Requirements

PXC200.H Borland: PXC2.VXD, PXC2_95.DLL,

FRAME.H ILIB_32B.LIB FRAME_32.DLL, and

VIDEO_32.H* VIDEO32B.LIB* VIDEO_32.DLL needed for run-
Microsoft: time. For VXD installation, see

ILIB_32.LIB Windows 95 Registry Changes
VIDEO_32.LIB* on page 19.

* The VIDEO files are described ldsing the Video Display DLLlon
page 78.

Any DLLs your application uses should be in the Windows SYSTEM
directory or in your path.

Chapter 4 Programming the PXC200

Windows NT Programming

The following table summarizes operating system specifics for com
ing, linking, and running C programs under Windows NT:

U
X
O
N
o
o

ay1 buiwweuboid

Windows NT 32-bit programs

Runtime, Memory, and

Header Files Libraries Installation Requirements

PXC200.H Borland: PXC200.SYS, PXC2_NT.DLL,

FRAME.H ILIB_32B.LIB FRAME_32.DLL, and

VIDEO_32.H* VIDEO32B.LIB* VIDEO_32.DLL needed for run-
Microsoft: time. For driver installation, see

ILIB_32.LIB Windows NT Registry Changes
VIDEO_32.LIB* on page 21.

* The VIDEO files are described losing the Video Display DLlon
page 78.

Any DLLs your application uses should be in the Windows SYSTEM32
directory or in your path.

Programming in a Multithreaded, Multitasking
Environment

Windows 95 and Windows NT are multithreaded, preemptive multitask-
ing operating systems. In such systems, using empty loops to wait for
events slows the system dramatically by wasting processing time that
could be used by other threads. For example, an empty loop like this
might be used in a Windows 3.1 program:

while (pxc.IsFinished(fgh,gh))

39

Imagenation

In Windows 95 and Windows NT, such an empty loop is not very effi-
cient, so an alternate functiowaitFinished(), is included in the library
for such applications:

pxc.WaitFinished(fgh,gh);

The WaitFinished() function uses system synchronization objects to pre-
vent the current thread from executing while the wait is in progress.
Since all queued operations finish executing during vertical blank, poll-
ing only once per vertical blank is just as accurate as polling more often,
but significantly improves system performanééitVB() can be used to

add delays to polling loops to improve system performance.

Scheduling multiple threads to handle complicated image processing
tasks might make programming significantly easier, and the PXC200
library does allow multithreading with one important exception. A pro-
gram shouldot allow two different threads of execution to access the
same frame grabber at the same time. Doing so could put the frame grab-
ber into an unpredictable state, and possibly cause DMA transfers to be
misdirected. This limitation can’t be fixed by simply wrapping each

frame grabber control function in a mutual exclusion object, since many
functions permanently change the state of the frame grabber. In general,
you should make sure that only one thread is responsible for each frame
grabber. Functions that do not directly access the frame grabber, such as
the file 1/0 functions and the buffer manipulating functions, are safe to
multithread as long as the usual care is taken to be sure that the data they
access does not become invalid.

Programming Language Specifics

40

This section discusses specific information about writing programs in C
and in Visual Basic.

Chapter 4 Programming the PXC200

Programming in C

If you're using third-party libraries or multiple frame grabber libraries
developing your programs, the same function name might exist in m
than one library, causing a symbol collision. The PXC200 software
libraries are designed to help you avoid symbol conflicts.

CXa

N
o
S

ay1 buiwwreuboid

When you initialize a library, you can specify a unique library name
you'll use for calling all functions in that library. When you make func-
tion calls to that library, you call a function as a member of a structure.
The name of the structure is the library name you used to initialize the
library. The following example shows how you might initialize the
PXC200 frame grabber library using the library ngreand then call
theAllocateFG()function, which is used to get a handle for a frame grab-
ber:

imagenation_OpenLibrary(“pxc2_95.dIl", &pxc,
sizeof(pxc));
handle = pxc.AllocateFG(-1);

The first line initializes the frame grabber library. The second parameter,
pxg, is the library name you have chosen. The second line calls the
AllocateFG() function as a member of a structure cadbed

The same technique works with the Frame library and the DOS VGA
Video Display library. Just be sure to choose unique library names for
each library you initialize.

Visual Basic Programming

The Windows DLLs were designed to make the function calls as uniform
as possible, whether you're programming in C or in Visual Basic. Since
the syntax and keywords in Visual Basic differ from those of C, before
you start programming in Visual Basic, you should look at the Visual
Basic function definitions in the .BAS file.

41

Imagenation

42

There are a few things you should keep in mind when using Visual Basic
with the DLL functions:

Accessing frame data— C, you can use the pointer returned by
FrameBuffer()to access the image data in the frame. Visual Basic
doesn’t use pointers, so you must use the functB®iBixel()
GetColumn() GetRectangle()andGetRow()to access the data in a
frame. TheFrameBuffer(function exists in Visual Basic for situa-
tions where you need to get a pointer to pass to other Windows API
functions that are designed to work with pointers.

.BAS File—You must include the appropriate .BAS file in all projects
you build using the PXC200 DLL functions. The .BAS file includes
all the declarations you'll need to work with the DLLs. For 16-bit or
32-bit programs, include PXC2_V4.BAS and FRAME_V4.BAS; for
32-bit programs only, include VIDEO_32.BAS.

Buffers in Visual Basic 4.0

Visual Basic 4.0 includesByte type, which is equivalent to the
unsigned char type that the DLLs expect for buffers. Thus, the
VIDEO_32.BAS file usebuf As Byte in the function definitions. To
pass a buffer to the DLL, just pass the first element of your declared
Byte array.

Using the Visual Basic Development Environment

Caution

Do not use th&nd button in the Visual Basic development envi-
ronment to terminate your application. TBad button termi-
nates a program immediately, without executing the
Form_Unload function or any other functions. If you useBhe
button to exit a program, you might need to restart Windows to
free any frame grabbers that your program allocated.

Chapter 4 Programming the PXC200

Displaying Video in Visual Basic Applications

The PXC200 software includes a Video Display DLL that makes disp
ing captured images in a window quite simple. For more information,
Using the Video Display DLlon page 78.

002¢OxXd
ay1 Bulwureibold

Typical Program Flow

A program for capturing an image with the frame grabber contains at
least the following basic tasks:

1 Initialize the libraries.

2 Request access to the frame grabber.

3 Set up the destination for the captured image data.
4 Capture the image.

5 Release the frame grabber.

6 Exit the library.

In addition, a program might include:

» Selecting a video source, if you have more than one.

Adjusting attributes of the image, such as hue and saturation.

» Specifying scaling and cropping for the image.

Using the trigger signal to initiate a capture.

* Queuing functions so the program can do other work while the frame
grabber is busy.

Accessing the captured image data for analysis or processing.

The following sections describe these features in more detail and show
you how to use the library functions to accomplish each of these tasks.

43

Imagenation

Initializing and EXxiting Libraries

Before calling any other library functions, you must explicitly initialize
each library by calling the appropriapenLibrary() function. Follow-

ing your last call to a library, before your program terminates, you must
call the appropriat€loseLibrary() function. The actual function names

are specific to the operating system and language you are using, and are
described in the following sections.

C and Windows Programs

The OpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library under Windows 95 (32-bit programs) are:

imagenation_OpenLibrary(“pxc2_95.dIl", &pxc,
sizeof(pxc))
imagenation_CloseLibrary(&pxc)

The OpenLibrary() and CloseLibrary() functions for the Frame library
under Windows 95 and Windows NT are:

imagenation_OpenLibrary(“frame_32.dll", &frm,
sizeof(frm))
imagenation_CloseLibrary(&frm)

Wherepxcandfrm are the names you will use for the structures for call-
ing library functions. For 16-bit Windows 3.1 and Windows 95 pro-
grams, substitut6 for 95 or 32 in the name of the DLL in the examples
above. For more information on this calling convention,FAegram-

ming in G on page 41.

In the Windows versions of the libraries, the interrupt handlers are
installed by the low-level device drivers; the virtual device drivers
(VxDs) in Windows 3.1 and Windows 95. By default, the low-level
device driver is loaded when you start Windows, and is uninstalled when
you exit Windows.

44

Chapter 4 Programming the PXC200

C and DOS Programs

TheOpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library and the Frame library for C programs under DOS arj{

002OXd
ay1 buiwweuboid

PXC200_OpenLibrary(&pxc, sizeof(pxc))
PXC200_CloseLibary(&pxc)

FRAME_OpenLibrary(&frm, sizeof(frm))
FRAME_CloseLibrary(&frm)

Wherepxc andfrm are the names you will use for the structures for call-
ing library functions. For more information on this calling convention,
seeProgramming in Con page 41.

In the DOS and DOS/4GW versions of the library, initializing the library
installs an interrupt handler that is needed for frame grabber communica-
tion, and exiting the library uninstalls the interrupt handler. If your pro-
gram crashes or terminates without calling CloseLibrary(), you will
probably need to reboot your system, as it may be in an unstable state.

Visual Basic and Windows Programs

TheOpenLibrary()andCloseLibrary()functions for the PXC200 Frame
Grabber library for Visual Basic programs under Windows 3.1 and
Windows 95 are declared and called as:

declare function OpenLibrary lib “pxc2_95.dll” (ByVal
pxc as Long, ByVal count as Long) as Integer
declare sub CloseLibrary lib “pxc2_95.dllI” (ByVal
pxc as Long)

OpenLibrary(0,0)
CloseLibrary(0)

For the Frame library, substitute “frame_32.dll” for “pxc2_95.dIlI” in the
declarations and replace pxc.

45

Imagenation

46

Troubleshooting OpenLibrary()

Check the return value from OpenLibrary() to make sure the function
was successful (non-zero = success). OpenLibrary() functions will fail
under Windows if the DLLs or drivers are not present.

The OpenLibrary() functions for the Frame library and the DOS VGA
Video Display library should fail only when the system has insufficient
memory; each function allocates a small amount of memory for internal
data structures.

OpenLibrary() for the PXC200 Frame Grabber library can fail under the
following conditions:

» The PCI BIOS does not exist or is malfunctioning. Your computer
probably has a hardware problem.

» The PCI BIOS was unable to assign an IRQ to the frame grabber. You
may need to modify your CMOS settings to make more IRQs avail-
able to the PCI BIOS.

» There is no suitable memory block in upper memory. In DOS, each
frame grabber requires a contiguous 4KB block of upper memory, and
OpenLibrary() will try to find such a block. For more information, see,
DOS, DOS/4GW, and Windows 3.1 Software Installago@p 1on
page 15.

» There is insufficient conventional memory. OpenLibrary() allocates a
small amount of storage for internal data structures.

» There are no Imagenation frame grabbers in your computer, or they
are malfunctioning.

Chapter 4 Programming the PXC200

Requesting Access to Frame Grabbers

—
<

00cOXd
ayl buiwwriboid

A process must have a handle to a frame grabber to communicate
TheAllocateFG() function returns a handle to the specified frame gre
ber if it exists and hasn't already been allocated to another process.

FreeFG() frees the specified frame grabber, so it can be allocated b
other processes.

Frame grabber handles are specific to the process that allocated them.
Don’t share a handle between processes; trying to do so will cause unpre
dictable behavior.

If you're using multiple frame grabbers in a single system, you'll need to
determine which frame grabber is which. Due to the design of the PCI
bus, bus sloterodoesn’t necessarily correspond to frame grabeey

and the number of the frame grabber in a particular bus slot can vary
between different operating systems. You can determine which frame
grabber is which by connecting a video source to only one frame grabber
and then using the PXCVU program (or your own program) to switch
between frame grabbers.

When the AllocateFG() function fails, it is often because another process
is using the frame grabber, or because a program terminated unexpect-
edly, leaving a frame grabber allocated. In the latter case, to free all
frame grabbers, you might need to reboot your system.

Setting the Destination for Image Captures

Library functions send the captured image dafeaimes Don’t confuse
this use of the terrframewith the ternvideo framewhich refers to a
video image consisting of two fields.fAamestores an image and some
basic information about it, including the image height, width, and num-
ber of bits per pixel.

a7

Imagenation

48

Allocating and Freeing Frames

You can create a frame for capturing images in two ways: with
AllocateBuffer() or with AllocateAddress(). The Frame library (see
Chapter 6Frame Library Referencen page 121) includes two addi-
tional functions for allocating frames for uses other than grabbing
frames:AllocateFlatFrame()andAllocateMemoryFrame()

AllocateBuffer() allocates storage for a frame in main memory and cal-
culates the physical address for the storage location, so the frame grabber
can send image data directly to the buffer via DMA. AllocateAddress() is
discussed irsending Images Directly to Another PCI Devyigelow.

When you allocate storage for a frame you specify the type of pixel data
that will be stored in the frame using one of the types listed below.

Pixel Data Type Description

PBITS_Y8 8-bit grayscale.
PBITS_Y16* 16-bit grayscale.
PBITS_Yf* Floating point grayscale.

PBITS _RGB15 5 bits each for red, green, and blue, plus one bit for
the alpha value.

PBITS_RGB16 5 bits each for red and blue; 6 bits for green.
PBITS_RGB24 8 bits each for red, green, and blue.

PBITS _RGB32 8 bits each for red, green, and blue, plus 8 bits for
the alpha value.

PBITS_RGBf* A floating point number each for red, green, and
blue.

* These types aren’t supported by the PXC200 frame grabber and can’t
be allocated with AllocateBuffer(). However, they can be useful in image
processing. For more information, s&ecessing Captured Image Data

on page 76.

Chapter 4 Programming the PXC200

Pixel Data Type Description

PBITS_YUV422 8 bits for Y and 8 bits for CrCb.
PBITS_YUV444* 8 bits each for Y, Cr, and Cb.
PBITS_YUV422P YUV422 in planar format.
PBITS_YUV444P* YUV444 in planar format.

* These types aren’t supported by the PXC200 frame grabber and ¢
be allocated with AllocateBuffer(). However, they can be useful in image
processing. For more information, s&ecessing Captured Image Data

on page 76.

U
X
O
N
o
o

ay1 buiwweuboid

Captured video is digitized by the frame grabber in YCrCb 4:2:2 format
and then converted to the specified pixel type before being transferred to
the frame.

For most pixel data types, the buffer is organized as an array of pixels,
where each pixel is represented by the data structure described above.
(See the PXC200.H file for the actual structure declarations.) The
YUV422P and YUV444P are both planar types. In these planar types, the
data is organized in three planes: plane 0O for the Y component, plane 1
for the Cr component, and plane 2 for the Cb component.

When theAllocateBuffer()function fails, it means that you don’t have
enough memory allocated for frame buffers. Try freeing any frame buff-
ers that you don’'t need. If calls to AllocateBuffer() still fail, try rebooting
your system.

When you want to free memory previously allocated by AllocateBuffer()
or AllocateAddress(), use tlieeeFrame() function. Do not try to free a
buffer when data is being transferred to it by queued functions or by
GrabContinuous()

49

Imagenation

50

Sending Images Directly to Another PCI Device

Some devices, such as high-end PCI video cards, have a physical address
where they can receive data via direct memory access (DMA). (Don't
confuse thiphysicaladdress with thingical addresses guointersthat
software normally uses. A physical address is a low-level construct that
the hardware uses in its internal communication, and is independent of
the operating system.) This provides a high-performance path for captur-
ing images directly to the device. For example, some PCI video cards
have dlat addressing modtnat allows DMA transfers to the card with-

out having to swap pages of video memory in and out. With such a card,
you should be able to display video in real time. To find out if your video
card supports flat addressing, and how to determine the physical address
for the card, refer to the documentation that came with the card or contact
the manufacturer.

UseAllocateAddress()to create a frame for a specifipdysical
addresswhere the frame grabber will copy the image data.
AllocateAddress() does not allocate any storage for an image buffer,
since the data will be sent directly to the physical address.

Caution

Use transfers to PCI devices only if you are familiar with DMA
data transfers. DMA transfers bypass the operating system, so
there is no opportunity to check for an incorrect address, and no
protection faults are issued. An incorrect address could cause the
operating system to crash. Since you are bypassing the window
management routines of Windows, you can also corrupt the win-
dows of other programs.

AllocateAddress() doesn't allocate any storage for an image buffer, so
theFreeFrame(junction frees only the memory used by the frame struc-
ture.

Chapter 4 Programming the PXC200

Grabbing Images

The library includes two functions for grabbing images to frames: Grjg
and GrabContinuous().

s
X
O
N
o
o

ay1 buiwuwieaboid

Grab() digitizes video and copies the data to the specified frame. Y@
can specify which video field the capture should start on, whether to
itize one field or both, and when to execute (dsemg Flags with Func-
tion Calls on page 66).

Grab() starts digitizing as soon as the command is processed by the frame
grabber.

GrabContinuous() continuously digitizes and transfers video to the
specified frame.

The frame grabber automatically changes to the correct pixel format for
the destination frame whenever a Grab(), GrabContinuous(), or
SwitchGrab() function is executed. Switching to a different pixel format
takes about one field time. When the change occurs because of a Grab,
this delay becomes part of the latency for the Grab. You can use the
SetPixelFormat() function to preset the expected pixel format and mini-
mize the latency in the Grab function.

If the PCI bus is overloaded, it's possible for captured data to be corrupt.
Although the Grab functions can’t determine when data is being cor-
rupted,CheckError(will return the value ERR_CORRUPT.

The most common reasons the Grab functions fail are:

» The frame grabber handle or the frame buffer handle is invalid.

* The image specified biyetWidth()or SetHeight()or the default
image size) is too large in width or height for the frame buffer.

51

Imagenation

If the Grab functions execute successfully, but don’t produce the image
you expect, the most common reasons are:

» If the captured image is all black or all blue, be sure to check that your
video source is attached to the frame grabber and that the iris on the
video camera is open.

» If you're using a system with an Intel Pentium Pro processor, you
might not be able to read valid data from a frame buffer in system
memory immediately after grabbing the image. This is due to the pro-
cessor caching the data, rather than writing the data immediately to
memory. Try inserting a delay in your program before reading the
data.

» If you get only a few lines of valid video at the top of an image you've
grabbed to a frame buffer in system memory, the PCI bus is being
overloaded or errors are occurring on the bus. Most Intel 486-based
systems don’t have a PCI bus that is fast enough for PXC200 frame
grabbers. Run the VGACOPY program to check for errors on the PCI
bus.

» The frame grabber can’t produce the image specifiesebyeight()
SetWidth() SetXResolution()andSetYResolution(fseeScaling and
Cropping Imageson page 58).

Selecting Video Inputs

Each frame grabber can have up to four video sources connected directly
to it. TheSetCamera()function selects one of the four video inputs to be
digitized. TheGetCamera()function returns the currently selected input.

By default, PXC200 frame grabbers automatically detect the video for-
mat (NTSC or PAL/SECAM) on the active camera input. If you need to
determine the video format of the current video source for use in your
program, you can use thMedeoType() function.

52

Chapter 4 Programming the PXC200

When you switch from one video input to another, there may be a dd
before the frame grabber can synchronize to the new video input. T
factors determine the time that it takes to synchronize to a video inp
once you've switched to it: input video type, whether the cameras ar
genlocked or not, and brightness levels. If the cameras are all of the
video type, there should be a delay of no more than eight field times
before re-synchronization occurs; if they are also genlocked, there w
no appreciable delay. (Cameras of different video types can'’t be ge
locked.) If the cameras are not of the same video type, there may be a
delay of as much as 2.5 seconds before re-synchronization occurs. If the
brightness level differs between two cameras of the same video type,
there may be some additional delay when switching. The optional Con-
trol Package reduces the synchronization delay to less than two field
times for non-genlocked video sources of the same type (less than 0.5
seconds for non-genlocked video sources of different types), provides
DC voltage restoration on all video inputs, and provides horizontal and
vertical sync outputs and for genlocking video sources to make switching
between sources instantaneous.

U
x
@)
he)
Py
(@]

a1 Buiuwel60.44

If the delay in detecting a video format change is too long, you can set the
video type directly by using thgetVideoDetect(function to specify the

type of video the frame grabber should expect. This forces the frame
grabber to digitize the incoming video based on the video format you
specify. You can specify the video format from a list of optional formats
for NTSC, PAL, and SECAM. Th&etVideoDetect()function returns

the currently set video format.

SetVideoDetect()s also useful when you are genlocking the PXC200 to
a video source using the horizontal and vertical sync drive signals avail-
able with the optional Control Package. In this case, the PXC200 might
not be able to reliably detect the format of the incoming video, but you
can usesSetVideoDetect(Jo specify the format.

53

Imagenation

Counting Fields

You can use th&etFieldCount() function to count the number of fields

the frame grabber has received. The counter normally reports the number
of fields that have elapsed since the last reset of the frame grabber, but
you can set the counter to start counting from any value by using the
SetFieldCount() function.

If the frame grabber is not connected to a video source, it will produce an
internal video sync pulse, so the field count will continue to increase

even in the absence of video input. Since the field counter counts vertical
sync pulses on the active input, switching input sources can cause irregu-
lar field counts, depending on the relative phase of the video inputs.

Adjusting the Video Image

54

The PXC200 provides a variety of adjustments you can make to the video
signal to change the way the signal is processed and the appearance of the
resulting captured image.

Setting Contrast and Brightness

The contrast adjustment lets you lighten or darken the image. It’s like a
gain control on the monochrome part of the video signal. Contrast can be
adjusted from 0.0 to 2.0. A contrast value of 1.0 leaves the signal
unchanged. You set the contrast adjustment usin§et@ontrast()

function. TheGetContrast() function returns the current contrast adjust-
ment.

The brightness adjustment acts as an offset for the monochrome part of
the video signal. The brightness can be adjusted from -0.5 to +0.5. A
value of +0.5 increases the digitized value of black to medium gray, and a
value of -0.5 brings the digitized value of white to medium gray. A value

Chapter 4 Programming the PXC200

of 0.0 leaves the digitized value unchanged. You set the brightness
adjustment using th&etBrightness()function. TheGetBrightness()
function returns the current brightness adjustment.

v
o
Q
U
ég
NE
o3
o @
—
>0
53

Setting Hue and Saturation

The hue adjustment lets you shift the colors in the image. Adjusting
hue is like rotating the color wheel, shown below. Positive values for
hue adjustment shift colors displayed as red toward yellow and green;
negative values shift reds toward magenta and blue.

Oo

magenta

+90°
blue green

You set the hue adjustment using SetHue()function. TheGetHue()
function returns the current hue adjustment. For NTSC video, you can
adjust the hue from -90° to +90°. Because of the nature of PAL/SECAM
signals, hue adjustments can’t be made.

The saturation adjustment lets you change the intensity of the colors in
the image. It's like a gain control on the color part of the video signal.
Saturation can be adjusted from 0.0 to 2.0, with a value of 1.0 being nor-
mal. A saturation value of zero removes all color, leaving a monochrome
image. You set the saturation adjustment using#i€aturation() func-

tion. TheGetSaturation() function returns the current contrast adjust-
ment.

55

Imagenation

56

Setting the Video Level

The video level adjustment lets you set the expected amplitude range of
the video signal from the bottom of the video sync portion of the signal to
bright white. (See the drawing, below, of a video signal for a single hori-
zontal line of video.) This value is normally 1.3 V, but can be set to any
value in the range zero to 2.5 V for video sources that don’t produce sig-
nals at the normal value. You set the video level using the
SetVideoLevel()function. TheGetVideoLevel() function returns the
current video level adjustment.

Video
Level

Active Video

Horizontal Sync

Setting Luma Controls

The termlumarefers to the monochrome part of the video signal. The
luma control lets you specify several features the frame grabber can
apply to processing the monochrome part of the video signal:

Low Filter —A low-pass filter that reduces high-frequency informa-
tion in the video signal.

Chapter 4 Programming the PXC200

Core Function—Causes all video below a specified level to be dig
tized to black. Coring can improve the apparent contrast of some
images.

U
X
O
N
o
o

Gamma Correction—Provides gamma correction for RGB video
output. For NTSC, a gamma value of 2.2 is used; for PAL, the ga
value is 2.8.

ay: Suiwwelboig

Comb Filter—Activates a comb filter to reduce artifacts in the mono-
chrome signal caused by crosstalk from the color signal.

Peak Filter—Activates a filter that amplifies high frequencies. This
filter can sharpen edges in a blurry image, but might also cause arti-
facts on edges that are already sharp.

You set the luma control features using 8®LumaControl() function.
TheGetLumaControl() function returns the current setting for each
luma control feature.

Setting Chroma Controls

The termchromarefers to the color part of the video signal. The chroma
control lets you specify several features the frame grabber can apply to
processing the color part of the video signal:

S-Video—Tells the frame grabber that the video signal is an S-video
signal with separate color and monochrome channels, rather than a
composite video signal. This causes the frame grabber to extract the
color information from the separate video signal rather than from the
composite signal. With the optional Control Package, all four video
inputs support S-video; without the Control Package, only video
input 1 supports S-video.

Notch Filter—Activates a filter to remove the color burst signal from
the video signal before the signal is digitized. This prevents color arti-

57

Imagenation

facts from appearing in composite video, while still allowing the color
information to be digitized.

Automatic Gain Control—Activates automatic gain control (AGC)
for color saturation to compensate for non-standard color signals.

Monochrome Detect—Sets the color signal to zero when the board
detects a missing or weak color burst signal.

Comb Filter—Activates a comb filter to reduce color artifacts.
You set the chroma control features using3k&ChromaControl()

function. TheGetChromaControl() function returns the current setting
for each chroma control feature.

Scaling and Cropping Images

58

The resolution of full-size digitized images depends on the video format
and the aspect ratio of your screen and pixels. Typical computer monitors
have an aspect ratio of 4 x 3 and use square pixels. Conventional televi-
sion monitors use rectangular pixels. Typical resolutions for several com-
mon formats are given below:

Video Format Image Resolution
NTSC square pixels 640 x 480
NTSC rectangular pixels 720 x 480
PAL/SECAM square pixels 768 x 576

PAL/SECAM rectangular pixels 720 x 576

You can digitize images at these resolutions, or you can scale and crop
the images, which saves memory and bandwidth for transferring and pro-
cessing images.

Chapter 4 Programming the PXC200

Scaling Images

PXC200 frame grabbers can scale the video image by interpolating g
values along both the horizontal and vertical axes. To scale an imagef@
simply specify the number of pixels you want along the horizontal args
vertical axes using theetXResolution()andSetYResolution()func-

tions. TheGetXResolution()andGetYResolution() functions return the
current values. You can scale images down to approximately 1/16 s

ay1 buiwuebolid

Note

When working with small values for Y resolution, you can often
get better image quality by specifying twice the desired Y resolu-
tion and using the SINGLE_FLD flag with the Grab() function.
This eliminates field blur and other problems related to interlac-

ing.
Cropping Images

In addition to scaling images, you can crop images vertically and hori-
zontally. You crop an image in width by specifying the starting column
and number of columns to keep, using $elLeft() andSetWidth()
functions. You crop an image in height by specifying the starting row and
number of rows to keep using tBetTop() andSetHeight() functions.

You can get the current values wibetLeft(), GetWidth(), GetTop(),
andGetHeight().

The figure on page 60 shows an example of an NTSC image that has
been scaled to 32 pixels by 26 pixels. If you want to crop the image to get
a rectangular image 16 pixels by 16 pixels from the center of the scaled
image, you would specify the cropping parametetsfas 8, width= 16,
top=>5, andheight= 16.

For all video formats, the default starting row is row four, and the default

number of rows is 480. For PXC200 frame grabbers, row zero of the
video image is the first row of valid video.

59

Imagenation

0 8 23

w
i

0—$0¢0¢000
'YYXXXXXX!
' YXXXXXX!
' YXXXXXX!
'YYXXXXXX!

(X N X N X N X}
(X X X N X N X
(X N X N X N X}
(X N X N X N X}
(X X X N X N X
(X N X N X N X
(X N X N X N X
(X X X N X N X
(X N X N X N X
(X N X N X N X
(X X X N X N X
(X N X N X N X
(X N X N X N X
(X X X N X N X

16 pixels

20
' YXXXXXX!
'YYXXXXXX!
' YXXXXXX!
' YXXXXXX!

25 920000000

000000 OGOOGOOOOOOOOOOONOOPOOOTODS
(I X NN NN NN NN NN NNNNNNNN NN NNN)
000000 OGOOGOOOOOOOOOOONOOPOOOTODS
(I X NN NN NN NN NN NNNNNNNN NN NNN)
000000 OGOOGOOOOOOOOOOONOOPOOOTODS
(I X NN NN NN NN NN NNNNNNNN NN NNN)
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
(A XXX NN NN NN NN N NN NNNNNXNNXNNN)
(XX N RN N NN NNNNNNNNNNNN NN N XN
[XXX NN NN NN NN N NN NNNNNXNXNNN o

16 pixels

Note

NTSC and PAL/SECAM video signals have only a half row of
valid video on the first and last rows of each frame. The first line
(row zero for both formats) contains valid video for only the last
half of the row. The last line (row 485 for NTSC, row 575 for
PAL/SECAM) contains valid video for only the first half. If you
include either of these rows in your image data, the entire row
will be sampled.

Timing the Execution of Functions

The PXC200 software library includes some advanced features for appli-
cations that are time-critical. These features let you determine whether

60

Chapter 4 Programming the PXC200

functions should be executed immediately, or if they should be placd
a queue to execute asynchronously while the program proceeds.

Queued Functions

002OXd
&yl Bulwweuboid

Frame grabber applications often include a loop that repeatedly grak
frame and then processes the information in it. For example:

for (;;)

{
pxc.Grab(fgh, fbuf, 0);
Process_Image(fbuf); /* your function */

}

wherefgh identifies the frame grabbdhuf specifies the frame handle,
andO indicates that Grab() is to use the default settings.

This technique of serially grabbing and processing frames is straightfor-
ward and easy to implement using the PXC200 library. However, there
are disadvantages to this serial process:

* While the image is being processed, the frame grabber can't grab
images, and much of the video image data that the camera is receiving
never gets processed.

* While the frame grab is occurring, the computer’'s CPU can’t do any
image processing and sits idle waiting for the next frame.

PXC200 frame grabbers transfer image data to a frame using direct mem:
ory access (DMA), which bypasses the computer’s operating system.
DMA makes it possible to have the frame grabber moving data to one
frame, while at the same time the application is processing image data in
another frame. The library has been designed to take advantage of this
parallel activity. Certain functions can be designateguasied by speci-

fying the QUEUED flag in the function call (seksing Flags with Func-

tion Calls on page 66). A queued function will return as soon as it puts

61

Imagenation

the necessary information in the queue, without waiting for the operation
to execute. This frees the application to continue processing.

Here’s an example of how you might use this capability:

long grabl, grab2;
grabl = pxc.Grab(fgh, fbufl, QUEUED);
grab2 = pxc.Grab(fgh, fbuf2, QUEUED);
pxc.WaitFinished(fgh, grabl)
; /* wait until grab 1 has completed */
for (;;)
{
Processimage(fbufl);
grabl = pxc.Grab(fgh, fbufl, QUEUED);
pxc.WaitFinished(fgh, grab2)
;/* wait until grab 2 has completed */
Processimage(fbuf2);
grab2 = pxc.Grab(fgh, fbuf2, QUEUED);
pxc.WaitFinished(fgh, grab1l)
;/* wait until grab 1 has completed */

}

The WaitFinished() function is used to pause until a function has com-
pleted. In the example above, once WaitFinished() indicates that the first
Grab() is complete, the program starts processing the first image.
WaitFinished() can check on a specific function in the queue (as in this
example), or check to see if all functions in the queue are complete.

If your system has more than one frame grabber installed, each frame

grabber has a separate queue, and WaitFinished() checks the appropriate
gueue based on the hantlia that you specify.

62

Chapter 4 Programming the PXC200

Synchronizing Program Execution to Video

-

The library has two functions, Wait() and WaitVB(), that can be used
synchronize program execution to incoming video:

v
o
«Q
o
ég
NE
o3
o @
—
=0
53

WaitVB() pauses until the end of the next vertical blank before ret
ing. This is the most efficient way to synchronize program executi
to video for non-queued functions.

Wait() can wait for the end of the next field, the end of the next frame
(two complete fields), or the end of a specific field before returning.
Wait() takes exactly as much time as a Grab() with the same parame-
ters. Since the Wait() function can be queued, it is most useful for syn-
chronizing queued functions to video.

You can also synchronize program execution based on the state of I/O
lines (sedDigital 1/0, on page 66).

Purging the Queue

TheKillQueue() function purges any pending functions in the queue and
terminates any that are executing. This function is designed for error
recovery and should only be used when the queue appears to have
stopped processing functions.

The results of any functions in the queue wKélQueue()is called are

undefined. For example, if a call to Grab() is in the queue when
KillQueue() is called, the image data in the frame might not be valid.

Immediate Functions

You can specify that a function should only execute if there is nothing in
the queue. The library provides the flag IMMEDIATE for this purpose. If
a function specified asnmediateexecutes when functions are in the

63

Imagenation

64

queue, it will return failure without doing anything. Otherwise, the func-
tion will return when it has completed.

Function Timing Summary

Thequeuedandimmediatesettings are not mutually exclusive. A func-
tion can be declared to be either one, neither, or both. The behavior of
each setting is summarized below:

Neither queued nor immediate Executes when all functions in the
gueue have completed, and returns when execution is completed. This
is the default.

Queued.Execution is deferred until previously queued functions have
executed. The function returns immediately, and the program contin-
ues to the next statement. The frame grabber executes the queued
instructions concurrently with the program’s execution of any non-
frame grabber functions.

Immediate. Only executes if there are no functions in the queue. The
function returns when execution is completed.

Queued and Immediate Only executes if there are no functions in

the queue. The function returns immediately, and program continues
to the next statement. The frame grabber executes the queued instruc-
tions concurrently with any non-frame grabber functions. If there is a
non-queued function in progress, the application doesn’t proceed until
that function is complete.

Many applications don’t require the QUEUED and IMMEDIATE flags.
If you don’t use either flag, the function executes as soon as the frame
grabber has finished the previous operation, and the function returns
when the frame grabber has finished executing it.

Chapter 4 Programming the PXC200

You can use the QUEUED and IMMEDIATE flags with any of the fol

lowing functions: éU

«Q

Grab() SetCamera() Wait() % %

GrabContinuous() SwitchCamera() WalitAllEvents() § é

SetBrightness() SwitchGrab() WaitAnyEvent() s
SetContrast()

These functions returnfandlethat can be used bgFinished()and
WaitFinished(to check their progress.

The following functions always wait until all functions in the queue have
completed before executing:

GetFieldCount() SetWidth() SetlOType()
SetFieldCount() SetXResolution() SetPixelFormat()
SetHeight() SetYResolution() SetVideoDetect()
SetLeft() SetChromaControl() SetVideoLevel()
SetTop() SetLumaControl()

All functions not listed here will execute when they are called and return
when they have completed. They may execute concurrently with func-
tions in the queue.

65

Imagenation

Using Flags with Function Calls

Digital 1/0

66

Several of the frame grabber control functions take a set of flag bits as
one of their parameters. The possible flags are:

Flag Description

EITHER Operation will start on the next field.

FIELDO Operation will start on an even video field.
FIELD1 Operation will start on an odd video field.
SINGLE_FLD Operation will only apply to one field.
IMMEDIATE Operation will fail if the frame grabber is busy.
QUEUED Operation will be queued for later processing.

Flags can be combined with the bitwise OR operator.
The default behavioiflags = 0) for a function that uses flags is:

* Wait until the frame grabber is not busy.

» Start on the next field.

* Process a two-field, interlaced frame (if the function processes an
image).

» Return after the operation is complete.

Not all flags are relevant to each function that hl\ags parameter. For
example, some functions, such as SetBrightness() and SetHue(), ignore
the FIELD choice flags and always operate as if the EITHER flag was
specified.

This section discusses programming the digital 1/0 lines on the PXC200.
The PXC200 includes a single digital input (line 0) that lets you synchro-

Chapter 4 Programming the PXC200

nize the frame grabber with other devices in the system. The optiond
Control Package adds I/O lines, for a total of four input lines (lines O
and four output lines (lines 4-7). If your frame grabber doesn’t have
Control Package, none of the information@wntrolling the Output
Lines on page 71, applies to your board, and the functio@emirolling
the Input Linesbelow, can only be used with line 0.

U
X
O
N
o
o

ay1 buiwweubolid

Controlling the Input Lines

You can use the input lines to read information from an external device
and to initiate actions in your program. For example, you could use an
input line to trigger the frame grabber to capture an image on a signal
from a camera or other external device.

Setting Up and Reading the Input Lines
You use the&setlOType() function to set up the input lines. You can set
up an input line so that the state of the line will be set for any of the fol-
lowing conditions:

Rising signal—signal changed from low to high.

Falling signal—signal changed from high to low.

Input signal—signal is high (the default).
On the standard board (without the optional Control Package) rising and
falling triggers on the single trigger input are detected immediately. With
the optional Control Package, rising and falling triggers on any of the
inputs are always detected at vertical blank, so only one transition per

field will be detected.

TheGetlOType() function returns the current type of an I/O line, as set
by the SetlOType() function.

67

Imagenation

68

TheReadlO() function returns the current state of all 1/O lines. Bits 0-3
represent the input lines, and bits 4-7 represent the output lines.

Dealing with Trigger Bounce on Input Lines

Mechanical switches used as the trigger input can bounce (create spuri-
ous edges) when opening or closing. This can cause problems when you
set the input to watch for signal edges or transitions. For example, a
switch to ground will cause a falling edge when the switch closes, but
will also cause more falling edges when the switch reopens, due to the
microscopic bounce of the switch contacts. This would cause the
PXC200 to detect multiple triggers where only one real trigger event has
occurred.

With debounce compensation, after a trigger and the software acknowl-
edge, new triggers are locked out until the trigger input has returned to
the untriggered state during at least one vertical blank. This means that
when you use debounce compensation with an edge-triggered input, you
won't be able to grab two consecutive fields. In the switch example given
above, the switch would need to be open for at least one field time before
closing again.

The SetDebounce(function lets you set the length of the debounce
delay and whether to debounce both the latched edge and the inactive
edge of the signal for each input lit@etDebounce()returns the cur-

rently set values for an input line. The debounce functions apply only to
boards that have the optional Control Package.

Using an Input Line as a Trigger

Using an input line to initiate some action typically involves the follow-
ing steps in a program:

1 Set up the line to change state when the signal on the line changes.

Chapter 4 Programming the PXC200

2 Queue a WaitAnyEvent() or WaitAllEvents() function to wait for th
state of the line to change.

3 Queue a follow-on action to take place when the event has been
detected.

U
X
O
N
o
o

ay1 buiwweuboid

You can program thé/aitAnyEvent() function to watch the state of ong
or more input lines. When WaitAnyEvent() reaches the top of the qu
processing of the queue pauses until at least one of the watched lines is ir
the specified state; then, the next function in the queue is processed. For
example, you can set up WaitAnyEvent() to watch for lines 0 and 3 to be
set, and the program will pause as long as the states of both lines are
clear. As soon as the state of either (or both) lines is set, the program will
resume processing the queue.

A common use for a trigger input on the PXC200 is to initiate a capture
when the trigger signal is detected. You can accomplish this with these
two lines of code:

pxc.WaitAnyEvent(fgh, fgh, 1, 0, QUEUED);
pxc.Grab(fgh, frh, flags);

TheWaitAllEvents() function pauses processing of the queue altdf

the watched lines are at the specified state. For example, if you set up
WaitAllEvents() to watch for lines 0 and 3 to be clear, the state of both
lines must be clear before processing the queue resumes. As long as the
state of at least one of the lines is set, processing the queue remains sus
pended.

You designate which lines WaitAnyEvent() and WaitAllEvents() should
watch, and which state to watch for, by settirgjadeparameter and a

69

Imagenation

70

maskparameter in the function call. Both functions read the I/O lines, as
ReadlO()would, and evaluate the expression:

(ReadlO() ™ state & mask

where “N” is the bitwise exclusive OR operator, and “&” is the bitwise
AND operator. This lets you designate the state (0 or 1) to watch for on
each line and limits the lines watched to those with a value of 1 in the
mask. Bits 0-3 in botktateandmaskrepresent the input lines 0-3 on the
PXC200.

The WaitAnyEvent()andWaitAll[Events()functions also let you use the
I/O lines on one frame grabber to trigger events on another frame grabber
by specifying the handles for the two frame grabbers in the function call.

When processing continues, WaitAnyEvent() and WaitAllEvents() set a
switch and clear the state of the input line. $imichis set to the number

of the highest line that had a state of 1. If the state of more than one of the
watched lines is a 1, WaitAnyEvent() clears only the state of the highest-
numbered line, while WaitAllEvents() clears all lines. For example, if
both lines 0 and 3 have a state of 1, the switch will be set to 3;
WaitAnyEvent() will clear only the state of line 3, while WaitAll[Events()
will clear both lines 0 and 3.

The follow-on operation in the queue can be a Grab() or any other func-
tion that can be queued (see the list on page 65).

Several functions are specifically designed to work with the switch value
set by the WaitAnyEvent() and WaitAllEvents() functions:

GetSwitch(}—Returns the current value of the switch. You can use
the value returned to control the flow of your program.

SwitchGrab()—Performs a Grab() to capture an image, but sends the
image to one of four possible frames depending on the value of the
switch.

Chapter 4 Programming the PXC200

SwitchCamera(}—Performs a SetCamera(), selecting one of the f(
possible video input sources based on the value of the switch.

For example, the following code causes the camera input to switch
input O if trigger O is received, to input 1 if trigger 1 is received, and
on:

00COXd
ay1 buiwweuboid

pxc.WaitAnyEvent(fgh, fgh, Ox0F, OxOF, QUEUED);
pxc.SwitchCamera(fgh);

The switch value is cleared when the frame grabber is reset by calling the
Reset()function.

Controlling the Output Lines

You can use the output lines (available with the optional Control Pack-
age) to send timing signals or other information to an external device. For
example, you could use output lines to send a programmed sequence of
strobe pulses to a camera or other device. You can control the output
lines either by writing the state of the lines directly or by using the auto-
matic strobe functions.

Writing to the Output Lines

You can set the state of the output lines usingMhieelmmediatelO()
function. You designate which lines to set, and which state to set for
each, by setting stateparameter and maskparameter in the function
call. Any line for which themaskbit is set to 1 will have its state set to
the value of the corresponding bitstate The function will fail if all
mask bits are zero.

On boards with latched input lines, you can use the WritelmmediatelO()
function to clear the input line after you read the line.

71

Imagenation

72

TheReadlO() function returns the current state of all I/O lines. You can
use theSetlOType(function with output lines 4-7, but the only valid
type for these lines is IO_OUTPUT.

Using the Automatic Strobe Functions

While you can control the output lines of the optional Control Package
with the WriteImmediatelO() function, the frame grabber library includes
dedicated strobe functions that simplify creating strobe pulses on the out-
put lines.

Note

The automatic strobe functions assume a stable incoming video
signal. If the video signal is absent or unstable, strobe pulse tim-
ing will be inaccurate.

The functions for firing the strobes are:
FireStrobe()—Fires a strobe pulse once on the specified output lines.

SyncStrobe(}—Fires a strobe pulse at the specified line of the incom-
ing video field on the specified output lines. SyncStrobe() continues to
fire for each field until you disable it.

TriggerStrobe()—Fires a strobe pulse once on the specified output
lines in response to a trigger on an input line.

Note

If the input line is set to be edge-sensitive, the strobe will trigger
immediately when the board sees the edge, even though software
functions such as ReadlO(), WaitAnyEvent(), and

WaitAllEvents() won't register the trigger input until the next ver-
tical blank.

Chapter 4 Programming the PXC200

Several functions are also provided for setting up various features o
strobe pulses:

SetStrobePeriod(3—Sets the duration of the strobe pulse for each
line.

002OXd
ay1 buiwweuboid

SetDoubleStrobe(3—Sets up output line 7 to output two strobe puls
and specifies the gap that separates the pulses. The width of bot
pulses is determined by SetStrobePeriod(). This function works only
on line 7.

SetHoldoffMask(), SetHoldoffStart(), andSetHoldoffWidth() —

Sets up &oldoff periodfor the strobes. The holdoff period is defined
by specifying a starting line number in an incoming video field and a
number of lines for the duration of the holdoff period. When the
FireStrobe() or TriggerStrobe() functions execute during the holdoff
period, the strobes are delayed, firing at the end of the holdoff period
rather than immediately. The holdoff period is ignored for the
SyncStrobe() function.

Each of these functions has a corresponding function for determining the
current settingGetStrobePeriod() GetDoubleStrobe()
GetHoldoffMask(), GetHoldoffStart(), andGetHoldoffWidth() .

All of the output lines are initialized with SyncStrobe() disabled, double

pulses disabled, a strobe length of 1.088 ms (17 scan lines), and a holdoff
period of one line starting at line 9 for field 0 and at line 8 for field 1.

Horizontal and Vertical Sync Drive Signals

The horizontal and vertical sync drive signals available with the optional
Control Package are always enabled, so there is no software interface for
these signals.

73

Imagenation

Error Handling

The CheckError() function returns a flag if any of the following errors
have occurred:

Invalid frame grabber handle—CheckError() was called using an
invalid handle for the frame grabber.

Corrupt data—A captured image was transferred incorrectly and
might contain bad data.

Overflow—The incoming video signal exceeds the range of the digi-
tizer.

Error flags get cleared every tifideckError() AllocateFG() or Reset()
are called.

You can use thReset()function to restore the frame grabber to its
default state. Reset() aborts any operations pending in the queue and the
digital I/0.

Reading Frame Grabber Information

Board Revision Number

The frame grabber has a revision number encoded in it, which can be
read using th&®eadRevision()function. In most cases you won'’t need
this function. If you need your revision number for calling Imagenation
Technical Support, use one of these easy methods:

DOS or DOS/4AGW—Run the PXCREV program.

74

Chapter 4 Programming the PXC200

Any version of Windows—Run either of the PXCDRAW sample
programs. The revision number appears in the title bar.

Hardware Protection Key

RY

o
Q@
U
ég
NE
o5
o@
=
&

You can request to have your frame grabbers encoded with a uniqus
tection key that your software can read usingRbeadProtection()func-
tion. Checking for the key in software gives you some protection aga
software piracy, since you can prevent the software from running on sys-
tems that you have not supplied.

Serial Number

You can request to have your frame grabbers encoded with a serial num-
ber, which can be used to identify a specific board.RéwdSerial()
function returns the encoded serial number, if any.

Frame Grabbing and PCI Bus Performance

Data transfers can take advantage of the maximum 132 MB per second
burst transfer rate of the PCI bus. Although actual throughput is typically
well below the maximum burst rate, a properly-designed system can sup-
port real-time transfer and display of at least 8-bit-per-pixel video image
data. Actual throughput is affected by the PCI implementation on the
motherboard, the design of the PCI video controller or other PCI device,
and the load on the bus due to all PCI devices using it.

If the PCI bus is overloaded, it's possible for captured data to be corrupt.

Although the Grab functions can’t determine if data is being corrupted,
CheckError(will return the value ERR_CORRUPT.

75

Imagenation

Accessing Captured Image Data

You can access image data stored in a frame in main memory in two
ways:

* Use the=rameBuffer() function to get dogical address (a pointer) to
the data and use the pointer to operate directly on the data. You can
use FrameBuffer() only on frames you create WillbcateBuffer()
AllocateFlatFrame()andAllocateMemoryFrame(frames you create
with AllocateAddress(ran’t be read by the library, so you can't use
FrameBuffer() to get a logical address to those frames.

» Use theGetPixel(), GetRectangle() GetRow(), andGetColumn()
functions to copy parts of the image data from a frame to a buffer you
have created in memory. Use fRetPixel(), PutRectangle()

PutRow(), andPutColumn() functions to copy parts of the image

data a buffer you have created in memory to a frame. For languages,
such as Visual Basic, that do not have pointers, these functions are the
only way to access the data in a frame buffer. These functions will
cause unpredictable results if the buffer you are copying to isn’t large
enough to hold the data.

The following functions are also useful in working with frame data:

CopyFrame()}—Copies a rectangular region of pixels from one frame
to another frame.

ExtractPlane(}—Returns a frame containing one of the planes from a
frame containing planar data, such as YUV422P or YUV444P.

FrameHeight(), FrameWidth(), andFrameType()}—Return, respec-
tively, the height, width, and type of pixel data for the specified frame.

AllocateMemoryFrame()—Can allocate frames for any of the pixel
data types, including the floating point types PBITS_Yf and

76

Chapter 4 Programming the PXC200

PBITS_RGBf. The memory for the frame is not guaranteed to be
one contiguous block.

AllocateFlatFrame(}—Can allocate frames for any of the pixel da
types, including the floating point types PBITS_Yfand PBITS_RG
The memory is guaranteed to be in one contiguous block.

—

0C&OXd
ay1 buiwweuboid

You can us&rameAddress()to get thehysicaladdress for a buffer, buf
don’t try to use this physical address to access data in an application pro-
gram; use the logical address returned~tgmeBuffer()instead.
FrameAddress() is provided only for special situations in which a physi-
cal address might be needed, as in writing device drivers.

Frame and File Input/Output

The library provides functions for writing and reading image data to and
from files. You can read and write unformatted (binary) files and Win-
dows BMP formatted files. Formatted files include information about the
image, including the width, height, and number of bits per pixel, while
binary files include only the pixel values.

BMP Files

The BMP routinefReadBMP() andWriteBMP() read and write frames
to image files on disk using the Windows BMP formats. Y8 images are
written and read as 8-bit-per-pixel BMP files with a grayscale palette.
RGB images are written and read as 24-bit, true-color BMP files. In
RGB32, the alpha data is ignored.

If a BMP file is read into a frame that does not have room to store the
entire BMP image, the image is clipped on the right and bottom edges. If
the BMP file image is smaller than the frame, the image is padded on the
right and bottom with zeros.

77

Imagenation

Binary Files

The routineRReadBin() andWriteBin() read and write unformatted

image data to and from files. Unformatted files contain no information on
an image’s height, width, or pixel type, so you must keep track of that
information. For example, nothing prevents you from saving a frame that
is 320 pixels wide and 160 pixels tall in an unformatted file, and then
reading that file into a frame that is 160 pixels wide and 320 pixels tall,
even though each line of the original frame will occupy two lines in the
new frame. If you use unformatted files, keep track of the characteristics
of the stored frames.

Using the Video Display DLL

78

The Video Display DLL is a simple tool for displaying video images in a
window. Since it is a standard DLL, it can be used with Visual Basic, C,
and other languages that can call DLLs. The Video Display DLL sup-
ports only one operation: copying an arbitrary rectangle of an image
frame onto an arbitrary rectangle of a window's client area. There are two
functions that are needed for this purpose:

void pxSetWindowSize(int x, int y, int dx, int dy) This function
specifies the position and size of the rectangle where the image will be
drawn, in units of pixels relative to the client area of the window
where the drawing takes place. If pxSetWindowSize() is never called,
the default values are= 0,y = 0, dx= 640, anddy = 512.

void pxPaintDisplay(HDC hdc, FRAME __ PX_FAR *frh, int x,

inty, int dx, int dy) This function takes the rectangular area specified
by x, y, dx, anddy from the framdrh, stretches it to fit the rectangle
set by pxSetWindowSize(), and draws it into the device cohtixt
which should be a valid device context for the window in which the
image is to appear.

Chapter 4 Programming the PXC200

The frame pointer used by pxPaintDisplay() must reference a valid fr
created by a call to the Frame DLL. This means that the library mus
initialized properly and a frame must be allocated before the Video [
play DLL can be used.

002OXd
ay1 buiwweuboid

The Video Display DLL doesn’t necessarily use the most efficient teg
nigues to pipe the video information to a window. It is intended to be
tool to make video display as easy as possible, and may not be the
solution if you are concerned primarily with performance.

To incorporate the Video Display DLL into your programs, you will need
these files:

16-bit Windows Programs 32-bit Windows Programs
VIDEO_16.H VIDEO_32.H
VIDEO_16.LIB VIDEO_32.LIB or VIDEO32B.LIB*
VIDEO_32.DLL
VIDEO_16.DLL
VIDEO_32.BAS

VIDEO _16.BAS
* Use VIDEO_32.LIB for Microsoft and VIDEO32B.LIB for Borland.

To link to the DLL, you must include the .BAS files in a Visual Basic
program. If you want to use this DLL with a C program, you must put the
prototypes of the functions (as they appear on page 78) in your program'’s
source or header files; these prototypes do not appear in the main heade
files.

79

Imagenation

80

PXC200 Library
Reference

Py
@
=
@
=
@
>
o
@

Areiqri 00zoxd

The chapter is a complete, alphabetical function reference for the
PXC200 Frame Grabber libraries and DLLs. For additional information
on using the functions, s€hapter 4Programming the PXC20®n

page 33. For reference information on the Frame libraryCheeter 6,
Frame Library Refereng®n page 121.

The 16-bit Windows 3.1PXC2_16.DLL uses the Pascal calling conven-
tion. The 32-bit Windows 99 XC2_95.DLL uses the _stdcall calling
convention.

This function reference is a general guide for using the functions with all
operating systems and languages. The functions will work as written for
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know the

definitions of constants and the sizes of the parameters and the return val
ues for the function calls. You can find the definitions of constants in the

81

Imagenation

header files for C and Visual BASIC. The following table gives the sizes
of the various data types that are used by the PXC200 library.

Type Size
unsigned char 8 bits
long, unsigned long 32 bits
void *, unsigned char *, int *, 32 bits
char *, LPSTR

short 16 bits

FRAME and FRAMELIB are defined types; to see how they are defined,
refer to the C language header file for the appropriate operating system.
Void is a special type. When it is the type for a parameter, the function
has no parameters; when it is the type for the return value, the function
does not return a value.

The library and DLL interface is almost identical for all operating sys-

tems. Functions that do not apply to a particular operating system or lan-
guage are noted with an icon:

@ Does not apply to Visual Basic.

AllocateBuffer()
Syntax

Return Value

Description

82

FRAME __ PX FAR *AllocateBuffer(short dx, short dy, short type);

A handle to the allocated FRAME structure.
NULL on failure.

Reserves memory for an image buffer of sixdy dy, with the specified
pixel datatype For the buffer to be usable by the frame grabibeand

dy must be at least as large as the image being grabbed. FreeFrame()
should be used to release the frame when it is no longer needed.

Chapter 5 PXC200 Library Reference

See Also

For more information and a list of pixel data types,Aéscating and
Freeing Frameson page 48.

FreeFrame()

AllocateFG()
Syntax

Return Value

Description

See Also

long AllocateFG(short n);

A handle for the requested frame grabber.
0 on failure.

AllocateFG() attempts to find a frame grabber and give the program
access to it. The program can request a specific frame grabberinas
that has more than one by specifying a numbddue to the design of
the PCI bus, bus slGtdoesn’t necessarily correspond to frame grabpe
and the number of the frame grabber in a particular bus slot can var
between different operating systems. You can determine which frame
grabber is which by connecting a video source to only one frame grabber
and then using the PCXVU program (or your own program) to switch
between frame grabbers. To request any available frame grabber, specify
n=-1.

Py
®
o
@
a
5
(@}
®

Areiqri 0020oXd

If the frame grabber is available, AllocateFG() returns a handle that must
be used in other library functions that refer to the frame grabber.

The program should call FreeFG() on the frame grabber when itis no
longer needed.

For more information, séRequesting Access to Frame Grabbers
page 47.

FreeFG()

83

Imagenation

CheckError()
Syntax

Return Value

long CheckError(long fgh);

0 if no errors have occurred.
1 if the handldghis invalid.
One or more of these flags if an error has occurred:

Error Returned
ERR_CORRUPT

Description

A captured image was transferred incorrectly
and might contain bad data.

The state of the digital I/O lines does not
match the state the software set them to.

ERR_NOT_VALID fghis not a valid frame grabber handle.
WARN_OVERFLOW The video signal exceeds the range of the digi-

ERR_IO_FAIL

tizer.

Description CheckError() queries the frame grabber to determine whether any of a
known set of errors occurred. These errors are automatically cleared
when CheckError() returns and by successful calls to AllocateFG() and
Reset().

CloseLibrary()

DOS Syntax void PXC200_CloseLibrary(FGLIB __ PX_ FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FGLIB __ PX_ FAR *interface);

Win VB Syntax
Return Value

Description

84

CloseLibrary(0)
None.

Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function called
by the program. A program that exits after calling OpenLibrary(), but
before calling CloseLibrary(), will leave the computer in an unstable
state and might crash the operating system.

Chapter 5 PXC200 Library Reference

See Also

For more information, sdaitializing and Exiting Librarieson page 44.

OpenLibrary()

FireStrobe()
Syntax

Return Value

short FireStrobe(long fgh, long mask);

Non-zero if successful.

Py
0
=+
w
=
@
>
(@}
@

Areiqri 0czoxd

0 on failure.

Description Causes any output lines specified by 1 bitsaskto immediately begin
a strobe pulse. FireStrobe() will fail if any bits other than 4-7 are set.
function executes concurrently with any queued functions. For more
information sedJsing the Automatic Strobe Functioms page 72.

See Also SetDoubleStrobe() SetHoldoffMask(), SetHoldoffStart(),
SetHoldoffWidth(), SetStrobePeriod()

FreeFG()

Syntax void FreeFG(long fgh);

Return Value

None.

Description Releases control of a frame grabber (previously allocated with the
AllocateFG() function) after the program is finished using the frame
grabber.

See Also AllocateFG()

FreeFrame()

Syntax void FreeFrame(FRAME __ PX_FAR *f);

Return Value

Description

None.

Returns memory associated with a FRAME handle to the system. You
must free all frames allocated by AllocateBuffer() before calling
CloseLibrary()

85

Imagenation

This function is identical to the FreeFrame() function in the Frame
library. Either version of the function can free a frame allocated by either

library.
See Also AllocateBuffer()
GetBrightness()
Syntax float GetBrightness(long fgh);
Return Value The current brightness setting.
0 on failure.
Description Returns the current brightness (monochrome offset) setting for the frame

grabber. This function executes concurrently with any queued functions.
If a SetBrightness() function is queued when GetBrightness() is called,
either function might execute first, affecting the result returned by

GetBrightness().

See Also SetBrightness() SetContrast()

GetCamera()

Syntax short GetCamera(long fgh);

Return Value The currently active video input.

-1 on failure.

Description Returns the active video input of the specified frame grabber. Use
SetCamera() to specify the active video input. If a SetCamera() function
is queued when GetCamera() is called, either function might execute
first, affecting the result returned by GetCamera().

See Also SetCamera()

86

Chapter 5 PXC200 Library Reference

GetChromaControl()

Py
@
=
@
=
@
>
o
@

Areiqri 00zoxd

Syntax short GetChromaControl(long fgh);
Return Value A set of flags if successful.
-1 on failure.

Description Returns a set of flags for the optional features for processing the color
portion of the video signal. The flag values are listed for the function
SetChromaControl()on page 101. For more information, Sting
Chroma Controlson page 57.

See Also SetChromacControl()

GetContrast()

Syntax float GetContrast(long fgh);

Return Value The current contrast setting.

0 on failure.

Description Returns the current contrast (monochrome gain) setting for the frame
grabber. This function executes concurrently with any queued functions.
If a SetContrast() function is queued when GetContrast() is called, either
function might execute first, affecting the result returned by
GetContrast().

See Also SetBrightness() SetContrast()

GetDebounce()

Syntax short GetDebounce(long fgh, short n);

Return Value

Description

See Also

The currently set debounce mode if successful.
-1if fgh is invalid.

Returns the currently set debounce mode.
SetDebounce()

87

Imagenation

GetDoubleStrobe()

Syntax float GetDoubleStrobe(long fgh, short n);

Return Value The currently set value if successful.
0.0 if the double strobe is disabled.
-1.0 on failure.

Description Returns the currently set gap, in seconds, between double strobes on out-
put linen.

See Also SetDoubleStrobe()

GetFieldCount()

Syntax long GetFieldCount(long fgh);

Return Value The field count if successful.
0 if fgh is not a valid handle.

Description Returns the number of fields the frame grabber has received since the last
reset of the board. You can set the starting count by using the
SetFieldCount() function.

See Also SetFieldCount()
GetHeight()
Syntax short GetHeight(long fgh);

Return Value The currently set height if successful.
0 if fgh is invalid.

Description Returns the height in pixels of the cropped image, as set by SetHeight().
The top-most pixel in the cropped image is set with SetTop().

This function waits until the frame grabber queue is empty before execut-
ing.
See Also SetHeight(), SetTop()

88

Chapter 5 PXC200 Library Reference

GetHoldoffMask()
Syntax long GetHoldoffMask(long fgh);
Return Value The currently set holdoff mask if successful.
-1 on failure.
Description Returns the currently set mask that defines which output lines are
affected by the holdoff period.
See Also SetHoldoffMask() -
ol
@ N
GetHoldoffStart() g3
=
Syntax short GetHoldoffStart(long fgh, short field); 3 g
<
Return Value The currently set starting line of the holdoff period if successful.
-1 on failure.
Description Returns the currently set starting line of the incoming video signal that

defines the beginning of the holdoff period. Valid valueditid are
FIELDO and FIELD1.

See Also SetHoldoffStart()
GetHoldoffWidth()
Syntax short GetHoldoffWidth(long fgh, short field);
Return Value The currently set duration of the holdoff period if successful.
0 on failure.
Description Returns the currently set number of lines of the incoming video signal

that defines the duration of the holdoff period. Valid valuediéda are
FIELDO and FIELD1.

See Also SetHoldoffWidth()

89

Imagenation

GetHue()
Syntax

Return Value

Description

See Also

float GetHue(long fgh);

The current hue setting if successful.
0 on failure.

Returns the current hue setting for the frame grabber. This function exe-
cutes concurrently with any queued functions. If the SetHue() function is
gueued when GetHue() is called, either function might execute first,
affecting the result returned by GetHue(). For more informatiorSeee
ting Hue and Saturatigron page 55.

SetHue()

Getlinterface()

Syntax
Return Value

Description

See Also

&9

const void __ PX_FAR *GetInterface(long handle);
None.

A C macro that returns a pointer to the interface structure for a given
frame grabbehandle You should assume that the structure pointed to is
read-only. It is your responsibility to know what type of object is repre-
sented by handle and to cast the return value to the correct type. Be sure
thehandleis valid, since this macro is not good at error detection. This
macro is intended for advance users who want to write complicated
device-independent code.

OpenLibrary()

GetlOType()
Syntax

Return Value

90

short GetlOType(long fgh, short n);

Type of 1/0 line n if successful.
0 on failure.

Chapter 5 PXC200 Library Reference

Py
@
=
@
=
@
=)
[in]
@

I

Areiqri 00zoxd

Description Returns the type of I/O line numberwhere < n< 7, and the type is
one of the following:
Return Value Description
LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.
LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.
IO _INPUT The state of the line is equal to the signal value
IO_OUTPUT The line is an output line.
Lines 0-3 are input lines. Lines 4-7 are output lines and always retu
IO_OUTPUT. For more information, s€egital 1/0, on page 66.
See Also SetlOType()
GetLeft()
Syntax short GetLeft(long fgh);

Return Value

Description

See Also

The currently set left edge if successful.
0 if fgh is invalid.

Returns the left-most pixel of the cropped image, as set by SetLeft(). The
width of the cropped image is set with SetWidth().

This function waits until the frame grabber queue is empty before execut-
ing.
SetLeft(), SetWidth()

GetLumaControl()

Syntax

Return Value

short GetLumaControl(long fgh);

A set of flags if successful.
-1 on failure.

91

Imagenation

Description Returns a set of flags for the optional features for processing the mono-
chrome portion of the video signal. The flag values are listed for the
function SetLumacControl()on page 108. For more information, S=-
ting Luma Controlson page 56.

See Also SetLumaControl()

GetSaturation()

Syntax float GetSaturation(long fgh);

Return Value The current saturation setting if successful.

0 on failure.

Description Returns the current saturation adjustment. This function executes concur-
rently with any queued functions. If the SetSaturation() function is
gqueued when GetSaturation() is called, either function might execute
first, affecting the result returned by GetSaturation(). For more informa-
tion, seeSetting Hue and Saturatipon page 55.

See Also SetSaturation()

GetStrobePeriod()

Syntax float GetStrobePeriod(long fgh, short n);

Return Value

Description

See Also

92

The currently set strobe period in seconds if successful.
-1 on failure.

Returns the strobe period, in seconds, currently set fon|iwheren is
one of the four output lines 4-7.

SetStrobePeriod()

Chapter 5 PXC200 Library Reference

GetSwitch()
Syntax

Return Value

Description

See Also

short GetSwitch(long fgh);

The number of the I/O line.
0 if neither of the Wait functions has completed.
-1 on failure.

When a WaitAllEvents() or WaitAnyEvent() function completes, the
function sets the switch value to the number of the highest 1/O line t
satisfied the wait condition. GetSwitch() returns the line number, or 2
if the function hasn't yet completed. For more information,Gestrol-
ling the Input Lineson page 67.

Py
@
=
@
=
@
>
o
@

This function executes concurrently with any queued functions. If
another WaitAllEvents() or WaitAnyEvent() function is queued when
GetSwitch() is called, either function might execute first, affecting thg
result returned by GetSwitch().

WaitAll[Events(), WaitAnyEvent()

Areiqri 00zoxd

GetTop()
Syntax

Return Value

Description

See Also

short GetTop(long fgh);

The currently set top edge if successful.
0 if fgh is invalid.

Returns the top-most pixel of the cropped image, as set by SetTop(). The
height of the cropped image is set with SetHeight().

This function waits until the frame grabber queue is empty before execut-
ing.
SetHeight(), SetTop()

93

Imagenation

GetVideoDetect()

Syntax short GetVideoDetect(long fgh);

Return Value The currently-set video type if successful.
-1 on failure.

Description Returns the video type expected by the frame grabber, as set by
SetVideoDetect().

See Also SetVideoDetect()

GetVideoLevel()

Syntax float GetVideoLevel(long fgh);

Return Value The current video level if successful.
0 on failure.

Description Returns the voltage difference between the bottom of video sync and

bright white, as set by SetVideoLevel(). For more informationSete
ting the Video Levebn page 56.

See Also SetVideoLevel()
GetWidth()
Syntax short GetWidth(long fgh);

Return Value The currently set width if successful.
0 if fgh is invalid.

Description Returns the width in pixels of the cropped image, as set by SetWidth().
The left-most pixel in the cropped image is set with SetLeft().

This function waits until the frame grabber queue is empty before execut-
ing.
See Also SetlLeft(), SetWidth()

94

Chapter 5 PXC200 Library Reference

GetXResolution()

Syntax

Return Value

Description

See Also

short GetXResolution(long fgh);
The current X resolution if successful.
0 if fgh is invalid.

Returns the number of pixels the frame grabber will digitize per row of
video, as set by SetXResolution(). The captured image might be fewer
pixels in width if the image has been cropped with SetLeft() and
SetWidth().

SetLeft(), SetWidth(), SetXResolution()

99uala)aYy

GetYResolution()

Syntax

Return Value

Areiqri 00zoxd

short GetYResolution(long fgh);

The current Y resolution if successful.
0 if fgh is invalid.

Description Returns the number of pixels the frame grabber will digitize vertically
per frame of video, as set by SetYResolution(). The captured image
might be fewer pixels in height if the image has been cropped with
SetTop() and SetHeight().

See Also SetHeight(), SetTop(), SetYResolution()

Grab()

Syntax long Grab(long fgh, FRAME __ PX_FAR *frh, short flags);

Return Value

Description

A queued operation handle if successful.
0 on failure.

Captures a video image and writes it to frame bdfferGrab() fails if

the image size is larger in either the horizontal or vertical dimension than
the destination frame. For more information, &eabbing Imageson

page 51.

95

Imagenation

The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Call©n page 66.

See Also AllocateFG(), AllocateBuffer(), GrabContinuous(), SwitchGrab()
GrabContinuous()
Syntax long GrabContinuous(long fgh, FRAME __ PX_FAR *frh, short state,

Return Value

Description

See Also

96

short flags);

Non-zero if successful.
0 on failure.

Turns continuous acquire mode onstifite= -1) or off (if state= 0) for a
given frame grabber. In continuous acquire mode, the buffés con-
tinuously updated with new video data. GrabContinuous() fails if the
frame is not of the correct type to hold the data.

Continuous acquire mode can be useful for software that is watching a
small number of pixels in every image, or for sending video data directly
to another PCI device, but also requires fast access to RAM. Using con-
tinuous acquire mode while other memory accesses or PCl accesses are
occurring might require more data to be transferred than is possible on
some computers, resulting in corrupt video data. The Grab functions
can’'t determine when data corruption is occurring, but CheckError() will
return ERR_CORRUPT.

The Grab() and SwitchGrab() functions and any operations that change
the type of data produced by the frame grabber or the resolution or size of
the video image automatically turn off continuous acquire mode.

For more information, se@8rabbing Imageson page 51.

The parametdtags can specify additional modes of operation for this
function. Ifflagsis 0, the default modes will be used. &stng Flags
with Function Callson page 66.

Grab(), SwitchGrab()

Chapter 5 PXC200 Library Reference

IsFinished()
Syntax short IsFinished(long fgh, int handle);

Return Value >0 if the operation is not in the queue.
0 if the specified operation is in the queue and has not completed.
-1 if the specified frame grabber is invalid.

Description Can be used to check whether a queued operation has finished by passin
thehandlereturned by the function that queued the operation. It can
check whetheall operations queued for a particular frame grabber a
finished by usindhandle= 0. For more information on queued function
seeTiming the Execution of Functionsn page 60.

Py

ENIETETES)
Areiqri 00zoxd

Many frame grabber control functions can queue operations if they §
passed the appropriate flags. For more informationJsew Flags with
Function Calls on page 66.

See Also WaitFinished()

KillQueue()

Syntax void KillQueue(long fgh);

Return Value None.

Description Aborts any operations in progress for the specified frame grabber. Any

operations in the queue when this function is called will be removed,
although the operations might already have executed. For instance, if a
Grab() command was in the queue, some or all of the video data might
have been written into the frame by the time the queue is killed.

This function takes several milliseconds to execute. It is intended prima-
rily for recovering from error conditions.

See Also Reset()

97

Imagenation

OpenLibrary()
DOS Syntax

Win C Syntax

Win VB Syntax

Return Value

short PXC200_OpenLibrary(FGLIB __PX_FAR *interface,
short sizeof(interface));

short imagenation_OpenLibrary(LPSTR dliname, _ PX_FAR *inter-
face, short sizeof(interface));

integer OpenLibrary(0,0)

Number of available frame grabbers.

0 on failure.

Description Initializes library data structures and locates all available frame grabbers.
It must be called successfully before any other library functions can be
used.

OpenLibrary() will usually fail only if no frame grabbers are detected,
but may also fail under conditions of extremely low memory.

For more information on using OpenLibrary(), $eéializing and Exit-
ing Libraries on page 44.

See Also CloseLibrary()

ReadlO()

Syntax unsigned long ReadlO(long fgh);

Return Value

Description

See Also

98

The state of the I/O lines if successful.
0 on failure.

Returns a set of bit flags indicating the state of the I/O lines. Bits 0 - 3
correspond to input lines O - 3. Bits 4 - 7 correspond to output lines 4 - 7.
Bits that have no associated 1/O line return zero.

SetlOType(), WriteImmediatelO()

Chapter 5 PXC200 Library Reference

ReadProtection()
Syntax

Return Value

Description

short ReadProtection(long fgh);

The protection key if successful.
0 on failure.

Returns the hardware protection key of the frame grabber. The returned
value will be zero unless the frame grabber has been programmed with a
key to match your custom software.

ReadRevision()
Syntax

Return Value

Description

ERIEIEIEN|
Areiqri 00zoxd

short ReadRevision(long fgh);

The revision number if successful.
0 on failure.

Returns the hardware/firmware revision number of the frame grabber. If
fgh= 0, ReadRevision() returns the revision number of the software
library.

You can also get the revision number using the PXCREYV utility program
in DOS or any of the sample programs in Windows; the sample programs
display the revision number in the title bar.

ReadSerial()
Syntax

Return Value

Description

long ReadSerial(long fgh);

The serial number of the board if successful.
0 on failure.

Returns the serial number of the frame grabber. The value returned will
be zero unless the frame grabber has been programmed with a serial
number.

99

Imagenation

Reset()
Syntax

Return Value

void Reset(long fgh);

None.

Description Returns the frame grabber to a default state, and aborts any queued oper-
ations and any digital I/O operations. This function takes several milli-
seconds to execute.

See Also KillQueue()

SetBrightness()

Syntax long SetBrightness(long fgh, float offset, short flags);

Return Value A gqueued operation handle if successful.

0 on failure.

Description Sets theoffsetvalue for the monochrome signal, where
-0.5< offset< +0.5. A value of +0.5 increases the digitized value of black
to medium gray, and a value of -0.5 brings the digitized value of white to
medium gray. For more information, sgetting Contrast and Bright-
ness on page 54.

The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 66.

See Also GetBrightness() SetContrast()

SetCamera()

Syntax short SetCamera(long fgh, short n, short flags);

Return Value

100

A gqueued operation handle if successful.
0 on failure.

Chapter 5 PXC200 Library Reference

Description

See Also

Selects one of the video inputs (0-3) on the frame grabber to be active.
The camera attached to the selected input is the source for all subsequen
video input to the frame grabber.

The parameteffagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Call$n page 66.

GetCamera()

SetChromacControl()

Syntax

Return Value

Description

short SetChromaControl(long fgh, short cf);

Py
@
pry
o
=
1]
>
o
(0]

Non-zero if successful.
0 on success.

Areiqri 00zoxd

Selects features for processing the color portion of the video signal.
parametecf is a set of flags that can be combined with the OR operator
to select specific features:

Flag Description

SVIDEO Color information is digitized from the separate
chroma channel of the S-video input. If this flag is
not set, color information is extracted from the
composite video signal. With the optional Control
Package, this flag affects all four video inputs
simultaneously; without the Control Package, this
flag affects only video input 1.

NOTCH_FILTER Activates an analog filter to remove the color burst
signal from the luminance channel before bright-
ness information is digitized

AGC Activates the automatic gain control for color satu-
ration. If this flag is enabled, the board attempts to
compensate for non-standard color burst ampli-
tudes.

101

Imagenation

Flag Description

BW_DETECT Forces the board to output only monochrome
video when the board detects weak or missing
color burst signals.

COMB_FILTER Activates digital filtering of the color data to
reduce artifacts.

For more information, se®etting Chroma Control®n page 57.

This function waits for the queue to empty before executing.

See Also GetChromaControl()

SetContrast()

Syntax long SetContrast(long fgh, float gain, short flags);

Return Value A gqueued operation handle if successful.

0 on failure.

Description Sets the monochrongain for the frame grabber, where G@ain< 2.0.
The amplitude of the input signal is multiplied by teen, so the con-
trast of the input signal is unchangeddain = 1. For more information,
seeSetting Contrast and Brightnesm page 54.

The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Call©n page 66.

See Also GetContrast(), SetBrightness()

SetDebounce()

Syntax short SetDebounce(long fgh, short n, short db);

Return Value

102

Non-zero on success.
0 on failure.

Chapter 5 PXC200 Library Reference

Description

See Also

Sets the debounce mode for Imevheren is one of the four input lines
0-3. The debounce mode is set to the value definetbbyheredb is a
logical expression of zero or more of the following flags:

DEBOUNCE_LONG Causes a delay of at least two vertical blanks
before a new edge can be detected. If this flag is
absent, the delay is one vertical blank.

DEBOUNCE_BOTH Applies the debounce delay to both the latchqg
edge and the returning edge. If this flag is
absent, the inactive edge is not debounced.

The default value for the debounce mode is zero. For more informat
seeDealing with Trigger Bounce on Input Lines page 68.

ERIETEIEN |
Areiqri 00zoxd

This function applies only to boards with the optional Control Packag
boards without the control package always behavedisaf0. This
function executes concurrently with any queued functions.

GetDebounce() SetlOType(), TriggerStrobe()

SetDecisionPoint()

Syntax

Return Value

Description

short SetDecisionPoint(long fgh, short field, short line);

Non-zero if successful.
0 on failure.

Sets the point during vertical blank where the queue is serviced, and the
point where edge-sensitive inputs are latched, to a spkweditor the
specifiedfield of the incoming video signal. This setting determines,
among other things, when the frame grabber decides whether to grab the
next field for a pending Grab() operation. Valid valuediild are

FIELDO, FIELD1, and EITHER. Valid values fone are 1< line < 256.

If the decision point is set too late, the frame grabber won't be able to
capture the next field. Recommended ranges azding < 17 for NTSC

103

Imagenation

and 3< line < 22 for PAL. Default values are 9 for field O and 8 for
field 1.

This function executes concurrently with any queued functions.

SetDoubleStrobe()

Syntax

Return Value

Description

See Also

float SetDoubleStrobe(long fgh, short n, float gap);

The actual value set if successful.
0.0 if the double strobe is disabled.
-1.0 on failure.

Sets strobes on output lingo fire two pulses separated ggp seconds
of delay. This function is valid only fer= 7. The duration of both pulses
is set by SetStrobePeriod(). Settgap< 0.0 disables double strobes.
For more information, sddsing the Automatic Strobe Functioms

page 72.

This function executes concurrently with any queued functions.
FireStrobe(), SetStrobePeriod() SyncStrobe() TriggerStrobe()

SetFieldCount()
Syntax

Return Value

Description

See Also

104

short SetFieldCount(long fgh, long c);

Non-zero if successful.
0 if fgh is not a valid handle.

Sets the starting value for counting incoming video fields. You can get
the number of fields that have elapsed since the field count was last set,
or since the board was last reset, by using the GetFieldCount() function.

GetFieldCount()

Chapter 5 PXC200 Library Reference

SetHeight()
Syntax

Return Value

Description

See Also

short SetHeight(long fgh, short dy);

The actual height set if successful.
0 if fgh is invalid.

The height in pixels of the cropped image. The top-most pixel in the
cropped image is set with SetTop(). The frame grabber sets the height to
the closest value less than or equalytat is capable of and returns the
actual value set. For more information, Smaling and Cropping
Images on page 58.

This function waits until the frame grabber queue is empty before ex
ing.
SetLeft(), SetTop(), SetWidth()

T IEYETEN |
Areaqr; 002oXxd

SetHoldoffMask()

Syntax

Return Value

Description

See Also

short SetHoldoffMask(long fgh, long mask);

Non-zero if successful.
0 on failure.

Determines which output lines, specified by 1 bitsesk(bits 4-7), are
affected by the holdoff period set with SetHoldoffStart() and
SetHoldoffWidth(). If FireStrobe() or TriggerStrobe() execute within the
specified holdoff period, the actual firing of the strobe is delayed until the
end of the holdoff period. By default, holdoff is enabled for all output
lines, 4-7. For more information, seksing the Automatic Strobe Func-
tions on page 72.

This function executes concurrently with any queued functions.
FireStrobe(), SetHoldoffStart(), SetHoldoffWidth(), TriggerStrobe()

105

Imagenation

SetHoldoffStart()
Syntax short SetHoldoffStart(long fgh, short field, short start);
Return Value Non-zero if successful.
0 on failure.
Description Specifies the linestart, of the incoming video signal that defines the first

line of the holdoff period. If FireStrobe() or TriggerStrobe() execute
within the specified holdoff period, the actual firing of the strobe is
delayed until the end of the holdoff period. Separate holdoff periods can
be defined for eacteld of the incoming video. Valid values for theld
parameter are FIELDO, FIELD1, or EITHER. The default valuesttot

are line 9 for field 0 and line 8 for field 1. For more information, see
Using the Automatic Strobe Functioms page 72.

This function executes concurrently with any queued functions.

See Also FireStrobe(), SetHoldoffMask(), SetHoldoffWidth(), TriggerStrobe()
SetHoldoffwidth()
Syntax short SetHoldoffWidth(long fgh, short field, short width);
Return Value Non-zero if successful.
0 on failure.
Description Specifies the number of linesjdth, of the incoming video signal that

defines the duration of the holdoff period. If FireStrobe() or
TriggerStrobe() execute within the specified holdoff period, the actual
firing of the strobe is delayed until the end of the holdoff period. Separate
holdoff periods can be defined for edwid of the incoming video. Valid
values for thdield parameter are FIELDO, FIELD1, or EITHER. The
default value fowidthis one line. For more information, sésing the
Automatic Strobe Functionsn page 72.

This function executes concurrently with any queued functions.
See Also FireStrobe(), SetHoldoffMask(), SetHoldoffStart(), TriggerStrobe()

106

Chapter 5 PXC200 Library Reference

SetHue()

Syntax long SetHue(long fgh, float h, short flags);

Return Value A queued operation handle if successful.

0 on failure.

Description Sets the hue adjustmenttoor the closest value the frame grabber is
capable of, where -99h < +90. SetHue() is ignored for PAL/SECAM
video signals.

T

For more information, se®etting Hue and Saturatipon page 55.)

@ N

See Also GetHue(), SetSaturation() g3
2 g

® 9

SetlOType() <

Syntax short SetlOType(long fgh, short n, short type);

Return Value Non-zero if successful.

0 on failure.

Description Sets the type of I/O line numberwhere (< n< 7, and the type is one of
the following:

Return Value Description

LATCH_RISING The state of the line will be set to 1 if the signal
changes from low to high.

LATCH_FALLING The state of the line will be set to 1 if the signal
changes from high to low.

IO_INPUT The state of the line is equal to the signal value.
This is the default type for input lines 0-3.
IO_OUTPUT The default type for output lines 4-7. This is the

only valid type you can use with SetlOType() for
the output lines.

Without the optional Control Package, only O is valid.

107

Imagenation

SetlOType() executes only after all functions in the queue have com-
pleted. For more information, s&dgital 1/0, on page 66.

See Also GetlOType()
SetlLeft()
Syntax short SetLeft(long fgh, short x0);

Return Value

Description

See Also

The actual pixel position set if successful.
0 if fgh is invalid.

The left-most pixel of the cropped image. The width of the cropped
image is set with SetWidth(). The frame grabber sets the left-most pixel
to the closest value td it is capable of and returns the actual value set.
For more information, se®caling and Cropping Imagesn page 58.

This function waits until the frame grabber queue is empty before execut-
ing.
SetHeight(), SetTop(), SetWidth()

SetLumaControl()

Syntax

Return Value

108

short SetLumaControl(long fgh, short If);

Non-zero if successful.
0 on failure.

Chapter 5 PXC200 Library Reference

Description Selects features for processing the monochrome portion of the video sig-
nal. The parametdf is a set of flags that can be combined with the OR
operator to select specific features:

Flag Description

LOW_FILT_AUTO Activates a low-pass filter that reduces high-fre-
LOW_FILT_1 guency information in the video. LOW_FILT_3
LOW_FILT_2 has the highest level of filtering.

LOW _FILT_ 3 LOW_FILT_AUTO automatically sets the filter

ing based on the resolution. Set, at most, one
these flags, or omit all for no filtering.

CORE_S8 Forces any video with a brightness value less

CORE_16 than n/256 (where n is 8, 16, or 32) to be digi-

CORE_32 tized as black. Set, at most, one of these flags
omit all for no coring.

GAMMA_CORRECT Activates a filter to gamma correct RGB video.
For NTSC, gamma = 2.2; for PAL/SECAM,
gamma = 2.8. YCrCb video is never gamma cor-

ERIEIEIEN
Areiqri 00zoxd

rected.
COMB_FILTER Activates digital filtering of the brightness data
to reduce artifacts.
PEAK_FILT_O Activates a filter that amplifies high-frequency
PEAK _FILT_ 1 information in the video. PEAK_FILT_O has the
PEAK_FILT_2 highest gain. These filters will sharpen edges in
PEAK_FILT_3 a blurry video image, but might cause artifacts

on edges that are already sharp. Set, at most, one
of these flags, or omit all for no filtering.

For more information, se®etting Luma ControJon page 56.
This function waits for the queue to empty before executing.

See Also GetLumaControl()

109

Imagenation

SetPixelFormat()
Syntax

Return Value

Description

short SetPixelFormat(long fgh, short type);

Non-zero if successful.
0 on failure.

Sets the pixel format that the frame grabber expects to digitize. Pixel
types are listed in the table on page 48.

The frame grabber automatically changes to the correct format for the
destination frame when a Grab(), GrabContinuous(), or SwitchGrab()
function is executed, so using SetPixelFormat() explicitly is often not
necessary. The frame grabber requires one field time of delay before it
can digitize in a new format, whether the format change occurs due to
calling SetPixelFormat() or due to the frame type for a Grab function.
When the change occurs because of a Grab, this delay becomes part of
the latency for the Grab. Using SetPixelFormat() to preset the expected
pixel format minimizes the latency in the Grab function. For more infor-
mation, sed\llocating and Freeing Framesn page 48

This function waits for the queue to empty before executing.

SetSaturation()
Syntax

Return Value

Description

See Also

110

long SetSaturation(long fgh, float s, short flags);

A gqueued operation handle if successful.
0 on failure.

Sets the saturation adjustmenstor the closest value the frame grabber
is capable of, where 0=0s < 2.0. For more information, se®etting Hue
and Saturationon page 55.

GetSaturation(), SetHue()

Chapter 5 PXC200 Library Reference

SetStrobePeriod()

Syntax

Return Value

Description

See Also

float SetStrobePeriod(long fgh, short n, float p);

The value of the period actually set if successful.
-1 on failure.

Sets linen, wheren is one of the four output lines 4-7, to strobe for a
period ofp seconds when fired. The valuepis between approximately
64 microseconds and 4.2 seconds (1 to OxFFFF scan lines). The va
actually set is rounded to the closest available value. The default val
1.088 ms (17 scan lines). For more information,l$gag the Automatic
Strobe Functionson page 72.

ERIEIEIEN|
Areiqri 002oXd

SetStrobePeriod() assumes that the horizontal scan rate of incoming
video is 64 us per line. This function executes concurrently with any
queued functions.

FireStrobe(), GetStrobePeriod() SyncStrobe() TriggerStrobe()

SetTop()
Syntax

Return Value

Description

See Also

short SetTop(long fgh, short y0);

The actual pixel position set if successful.
0 if fgh is invalid.

The top-most pixel of the cropped image. The height of the cropped
image is set with SetHeight(). The frame grabber sets the top-most pixel
to the closest value it is capable of and returns the actual value set.
For more information, se®caling and Cropping Imagesn page 58.

This function waits until the frame grabber queue is empty before execut-
ing.
SetHeight(), SetLeft(), SetWidth()

111

Imagenation

SetVideoDetect()

Syntax

Return Value

Description

See Also

112

short SetVideoDetect(long fgh, short type);

Non-zero if successful.

0 on failure.

Sets the video format the frame grabber should expégpeoCalling

this function may cause the X resolution and Y resolution to change if the
frame grabber can't support the current resolution in the new video for-
mat. Possible values foypeare:

Value

Description

AUTO_FORMAT

NTSC_FORMAT
NTSCJ_FORMAT

PAL_FORMAT

PALM_FORMAT
PALN_FORMAT

The frame grabber will measure the field length
and adjust to either NTSC or PAL video. Detect-
ing a format change will take about 2.5 seconds
for the standard board, or 0.5 seconds with the
optional Control Package.

The frame grabber expects NTSC video.

The frame grabber expects NTSC with no pedestal
voltage.

The frame grabber expects PAL B,D,G,H, or |
video.

The frame grabber expects PAL M video.
The frame grabber expects PAL N video.

SECAM_FORMAT The frame grabber expects SECAM video.

For more information, se®electing Video Input®n page 52.

This function waits for the video queue to empty before executing.

VideoType()

Chapter 5 PXC200 Library Reference

SetVideoLevel()

ERIEIEIEN|
Areiqri 00zoxd

Syntax float SetVideoLevel(long fgh, float white);

Return Value The video level actually set if successful.
0 on failure.

Description Sets the expected voltage difference between the bottom of video sync
and bright white, where 0Owhite< 2.5. The nominal level is 1.3 V.
The function sets the video level to the closest value the frame grabl
capable of and returns the value actually set. For more information,
Setting the Video Levedn page 56.
This function waits for the queue to empty before executing.

See Also GetVideolLevel()

SetWidth()

Syntax short SetWidth(long fgh, short dx);

Return Value

Description

See Also

The actual width set if successful.
0 if fgh is invalid.

The width in pixels of the cropped image. The left-most pixel in the
cropped image is set with SetLeft(). The frame grabber sets the width to
the closest value less than or equalxdt is capable of and returns the
actual value set. For more information, Smaling and Cropping

Images on page 58.

This function waits until the frame grabber queue is empty before execut-
ing.

SetHeight(), SetLeft(), SetTop()

113

Imagenation

SetXResolution()

Syntax short SetXResolution(long fgh, short rez);
Return Value The actual resolution set if successful.
0 if fgh is invalid.
Description Sets the number of pixels the frame grabber will digitize per row of

video. The frame grabber sets the resolution to the closest vak@itto
is capable of and returns the actual value set. For more information, see
Scaling and Cropping Imaggesn page 58.

This function waits until the frame grabber queue is empty before execut-
ing.
See Also SetlLeft(), SetWidth(), SetYResolution()

SetYResolution()

Syntax short SetYResolution(long fgh, short rez);
Return Value The actual resolution set if successful.
0 if fgh is invalid.
Description Sets the number of pixels the frame grabber will digitize vertically per

frame of video. The frame grabber sets the resolution to the closest value
torezit is capable of and returns the actual value set. For more informa-
tion, seeScaling and Cropping Imaggesn page 58.

This function waits until the frame grabber queue is empty before execut-

ing.

See Also SetHeight(), SetTop(), SetXResolution()
SwitchCamera()

Syntax long SwitchCamera(long fgh, short flags);

Return Value A queued operation handle if successful.
0 on failure.

114

Chapter 5 PXC200 Library Reference
Description Sets the active video input to the switch value set by the last complete
WaitAnyEvent() or WaitAllEvents() function. If the value of the switch
is larger than the number of valid video inputs, the function does nothing.
For more information, seéontrolling the Input Lingson page 67.
See Also WaitAllEvents(), WaitAnyEvent()
SwitchGrab()
Syntax long SwitchGrab(long fgh, FRAME __ PX_FAR *f0,

Return Value

Description

See Also

FRAME __ PX_FAR *f1, FRAME __ PX_FAR *f2,
FRAME __ PX_FAR *f3, short flags);

Py
@
=
@
=
@
>
o
@

A queued operation handle if successful.
0 on failure.

Areiqri 00zoxd

This function behaves just like Grab(), except that the image data is
ten to one of four frames depending on the last WaitAnyEvent() or
WaitAllEvents() function that completed. Some, but not all, of the frame
pointers can be NULL; if a NULL frame pointer is selected, the function
completes, but does nothing. For more information @drolling the
Input Lines on page 67.

This function fails if all frame pointers are NULL or if any of the frames
don’t have the correct width and height.

WaitAll[Events(), WaitAnyEvent()

SyncStrobe()
Syntax

Return Value

Description

short SyncStrobe(long fgh, short n, short field, short line);

Non-zero if successful.
0 on failure.

Fires a strobe pulse on output lmat the specifietine of the specified

field of the incoming video signal. Valid values for fiedd parameter

are FIELDO, FIELD1, EITHER, or zero. The strobe fires repeatedly with
each incoming field until you disable synchronous strobing by calling the

115

Imagenation

function again witlfield = 0. Valid values fotine are 1< line< 512,

though currently, fields longer than the PAL standard of 288 lines are not
supported. For more information, ddging the Automatic Strobe Func-
tions on page 72.

This function executes concurrently with any queued functions.

See Also SetStrobePeriod()

TriggerStrobe()

Syntax short TriggerStrobe(long fgh, short trig, long mask);

Return Value Non-zero if successful.

0 on failure.

Description Fires strobes on output lines with a 1 bit sehaskwhen a trigger is
detected on input linkig. If the input line is set to LATCH_RISING or
LATCH_FALLING, the strobe fires on the rising or falling edge of the
trigger, respectively. If the input line is set to IO_INPUT, the strobe fires
after the rising edge of the trigger. The strobe fires immediately after the
trigger edge, even though software functions such as ReadlO(),
WaitAllEvents(), and WaitAnyEvent() will not detect the trigger until the
next vertical blank. For more information, $¢&ing the Automatic
Strobe Functionson page 72.

This function executes concurrently with any queued functions.

See Also SetDebounce()SetlOType(), SetStrobePeriod()

VideoType()

Syntax short VideoType(long fgh);

Return Value

116

0 No video.

1 NTSC video.

2 PAL/SECAM video.
3 Other.

-1 Invalidfgh.

Chapter 5 PXC200 Library Reference

Description

See Also

Returns the type of video signal connected to the frame grabber: NTSC
format, PAL/SECAM format, or other. The video source is determined
by counting the number of lines per video frame. When the video line
count doesn’'t match either NTSC or PAL/SECAM, or the frame grabber
IS not auto-detecting, the function retuther.

SetVideoDetect()

Wait()
Syntax

Return Value

Description

See Also

long Wait(long fgh, short flags);

A queued operation handle if successful.
0 on failure.

Py
@
=
@
=
@
>
o
@

Areiqri 00zoxd

Waits for the end of the next field, the end of the next frame (two co
plete fields), or the end of a specific field, depending orfldgys you
specify. The default behavior whéags= 0 is to wait for two complete
fields.

If the Wait() function is QUEUED, it does not pause program execution,
but any QUEUED functions that are called immediately afterwards will
not execute until the Wait() is finished.

A useful rule for understanding the Wait() function is that it always has
the same timing as a Grab() function called with the same flags; that is, a
Wait() takes the same time to execute as the equivalent Grab() function,
but doesn’t collect any image data during that time.

The parameteftagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Call$n page 66.

WaitVB()

117

Imagenation

WaitAllEvents()
Syntax

Return Value

long WaitAllEvents(long fgh, long ioh, unsigned long mask,
unsigned long state, short flags);

A gueued operation handle if successful.

0 on failure.

Description Pauses processing of the queue until an I/O event occurs.
WaitAllEvents() examines the I/O lines as if by the expression
((ReadlO{oh) ~ Istatg & mask. While the expression is not equal to
mask the queue is paused. If the expression is equaasl the state for
the highest I/O line that was set is cleared, the switch is set to that I/O line
number, and processing of the queue resumes. For more information, see
Controlling the Input Lingson page 67.
This function will fail whemmask= 0 or whemtmaskhas any bits set that
represent invalid 1/O lines or lines that are output-only.
The parametdtagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Callon page 66.

See Also GetSwitch(), SetlOType(), SwitchCamera() SwitchGrab(),
WaitAnyEvent()

WaitAnyEvent()

Syntax long WaitAnyEvent(long fgh, long ioh, unsigned long mask,

Return Value

Description

118

unsigned long state, short flags);

A gueued operation handle if successful.
0 on failure.

Pauses processing of the queue until an I/O event occurs.
WaitAnyEvent() examines the 1/O lines as if by the expression
((ReadlO{oh) ~ !statg & mash. While the expression is zero, the queue

is paused. If the expression is non-zero, the state for the highest I/O line
that was set is cleared, the switch is set to that I/O line number, and pro-

Chapter 5 PXC200 Library Reference

See Also

cessing of the queue resumes. For more informatiorGCaseolling the
Input Lines on page 67.

This function will fail whenmask= 0 or whemmaskhas any bits set that
represent invalid 1/O lines or lines that are output-only.

The parameteffagsis a set of flag bits that can specify modes of opera-
tion for this function. Iflagsis 0, the default modes will be used. See
Using Flags with Function Call$n page 66.

GetSwitch(), SetlOType(), SwitchCamera(), SwitchGrab(),
WaitAllEvents()

WaitFinished()

Py
@
=
@
=
@
>
o
@

Areiqri 00zoxd

Syntax void WaitFinished(long fgh, long handle);
Return Value 1 if successful.
0 on failure.

Description Releases the processor to execute other tasks until a specific operation ir
the queue has finished. You identify an operation in the queue by the
handlereturned by the function that queued the operation. For
handle= 0, WaitFinished() waits until all operations in the queue have
finished. For more information, s€eogramming in a Multithreaded,
Multitasking Environmenton page 39.

See Also IsFinished()

WaitVB()

Syntax short WaitVB(long fgh);

Return Value

Description

Non-zero if successful.
0 on failure.

Waits until the next vertical blank. WaitVB() returns when the interrupt
routine has completed,; this is usually close to the beginning of vertical
blank, but can be at any time during vertical blank depending on system

119

Imagenation

loading. WaitVB() returns too late for frame grabbing functions called
immediately afterward to capture the field that has just begun.

See Also Wait()

WritelImmediatelO()

Syntax short WritelmmediatelO(long fgh, unsigned long mask,
unsigned long state);
Return Value Non-zero on success.
0 on failure.
Description Sets all I/O lines that have a 1 bit in thaskto the value in the associ-

ated bit ofstate Lines with a zero bit in the mask are not affected. The
function fails without doing anything if the mask has no 1 bits.

On boards with latched input lines, you can use the WriteimmediatelO()
function to clear the input line after reading the line.

For more information, se@ontrolling the Output Lineon page 71.
See Also ReadlO()

120

Frame Library
Reference

The chapter is a complete, alphabetical function reference for the Frame
libraries and DLLs. For additional information on using the functions
seeChapter 4Programming the PXC20@n page 33. For reference
information on the PXC200 Frame Grabber library, Geapter 5,
PXC200 Library Referencen page 81.

ERIIEIETEN
Arelgi] swelH

The 16-bit Windows 3.1, FRAME_16.DLL, uses the Pascal calling cq
vention. The 32-bit Windows 95, FRAME_95.DLL, uses the _stdcall
calling convention.

This function reference is a general guide for using the functions with all
operating systems and languages. The functions will work as written for
C and Visual Basic with the header files provided.

If you need to construct your own header file, you will need to know the

definitions of constants and the sizes of the parameters and the return val
ues for the function calls. You can find the definitions of constants in the

121

Imagenation

header files for C and Visual BASIC. The following table gives the sizes
of the various data types that are used by the PXC200 library.

Type Size
unsigned char 8 bits
long, unsigned long 32 bits
void *, unsigned char *, int *, 32 bits
char *, LPSTR

short 16 bits

FRAME and FRAMELIB are defined types; to see how they are defined,
refer to the C language header file for the appropriate operating system.
Void is a special type. When it is the type for a parameter, the function
has no parameters; when it is the type for the return value, the function
does not return a value.

The library and DLL interface is almost identical for all operating sys-
tems. Functions that do not apply to a particular operating system or lan-
guage are noted with an icon:

@ Does not apply to Visual Basic.
@ Does not apply to Windows NT.

AliasFrame()

Syntax

Return Value

Description

122

FRAME __ PX FAR *AliasFrame(FRAME __ PX FAR *f, short x0,
short y0, short dx, short dy, unsigned short type);

A pointer to the frame structure.
NULL on failure.

Creates a new frame structure that uses the memory from the original
frame’s image buffer, starting at the location of the pxdt0. The
framef must not be a paged frame buffer and must not be a planar data

Chapter 6 Frame Library Reference

type. The new frame treats the memory from the old frame as if it has the
new data formatype

AliasFrame() fails if the memory required for the new frame does not fit
completely inside the old frame. Freeing the old frame before freeing the
alias frame can cause undefined behavior, since this frees the image
buffer for the alias frame as well. Freeing the alias frame does not affect
the original frame’s buffer.

AllocateAddress() @

Syntax

Return Value

Description

See Also

FRAME __ PX FAR *AllocateAddress(unsigned long address, short dx,
short dy, unsigned short type);

A pointer to the frame structure.
NULL on failure.

Creates a frame of sizix by dy, with the specified pixelype from the
memory at the specified physi@ddress Bothdx by dy must be greater
than zero. AllocateAddress() can allocate any of the types listed on
page 48, except the planar types. This function does not attempt to ¢
sively allocate the physical address space or to verify that writable
ory actually exists there.

1 welH

Py
@
—h
o

SIS
Ae.qr;

This function lets you program specialized operations, like peer-to-p
transfers between the frame grabber and another PCI device. It should
not be used with linear addresses unless you know the processor's pagint
mode is disabled.

FreeFrame() should be called when the frame is no longer needed. This
will de-allocate memory associated with the FRAME structure, but will
not attempt to free any resources associated with the given buffer
address.

FreeFrame()

123

Imagenation

AllocateFlatFrame() @

Syntax FRAME __ PX_FAR *AllocateFlatFrame(short dx, short dy,
unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.
Description Creates a frame of sizix by dy, with the specified pixellype from

unpaged, contiguous physical memory. Baithby dy must be greater

than zero. The start of the image buffer will be aligned to at least a 32-bit
boundary in the program’s address space. AllocateFlatFrame() can allo-
cate any of the types listed on page 48, including the planar types. For
planar types, the memory for each plane will be contiguous, but the three
planes won’t necessarily be in one contiguous block. Also, the frame
structure itself is not necessarily in contiguous memory, only the image
buffer.

AllocateFlatFrame() can fail if the system is not configured to allow con-
tiguous buffers. The PXC200 doesn’t need flat frames; this function is
provided for compatibility with other products.

For more information and a list of pixel types, #dlecating and Free-
ing Frames on page 48.

FreeFrame() should be called when the frame is no longer needed.

See Also AllocateMemoryFrame(), FreeFrame()

AllocateMemoryFrame()

Syntax FRAME __ PX_FAR *AllocateMemoryFrame(short dx, short dy,
unsigned short type);

Return Value A pointer to the frame structure.
NULL on failure.

Description Creates a frame of sizix by dy, with the specified pixelypg from the
program’s memory heap. Botlkx by dy must be greater than zero. The

124

Chapter 6 Frame Library Reference

start of the image buffer will be aligned to at least a 32-bit boundary in
the program’s address space. AllocateMemoryFrame() can allocate any
of the types listed on page 48.

For more information and a list of pixel types, sdlecating and Free-
ing Frameson page 48.

FreeFrame() should be called when the frame is no longer needed.

See Also AllocateFlatFrame(), FreeFrame()

CloseLibrary()

DOS Syntax void FRAME_CloseLibrary(FRAMELIB _ PX_FAR *interface);

Win C Syntax void imagenation_CloseLibrary(FRAMELIB __ PX_FAR *interface);

Win VB Syntax

Return Value

CloseLibrary(0)
None.

Py
[¢]
-
m
=
(0]

0]

3
Arelgi] swelH

Description Returns to the system any resources that were allocated by
OpenLibrary(). CloseLibrary() should be the last library function callg
by the program. A program that exits after calling OpenLibrary(), butj
before calling CloseLibrary(), will leave the computer in an unstable
state and might crash the operating system.

For more information, sdaitializing and Exiting Librarieson page 44.

See Also OpenLibrary()

CopyFrame()

Syntax short CopyFrame(FRAME __ PX_FAR *source, short sourcex,

Return Value

short sourcey, FRAME __ PX_ FAR *dest, short destx, short desty,
short dx, short dy);

Non-zero if successful.
0 on failure.

125

Imagenation

Description

Copies a rectangle of sige& by dy from the framesourceto the frame

dest Copies data only between parts of rectangles that are within the
boundaries of the frames. CopyFrame() fails if the specified region is
entirely outside the boundaries of the frames, if the frames can’t be read
or written, if the frames are planar, or if the frame don’'t have the same
pixel data type. For more information, seecessing Captured Image

Data, on page 76.

ExtractPlane()

Syntax

Return Value

Description

126

FRAME __ PX FAR *ExtractPlane(FRAME _ PX FAR *f,
short plane);

Returns a frame that contains a single plane of the planar fr&etirns
NULL if fis not planar. The frame returned contains Y8 data for all the
planar types generated by the Frame library. The returned frame has a
width and height less than or equal to that of the source frame.

For YUV planar formats, plane 0 is the Y component, plane 1 is the Cr
component, and plane 2 is the Cb component. In YUV422P format,
plane 0 is the same width and height as the source frame, while both
planes 1 and 2 are the height of the source frame by half the width
(rounded up).

The frame returned by ExtractPlane() does not need to be freed by
FreeFrame(), and calling FreeFrame() on a frame with a single plane will
cause the function to return without doing anything. All planes extracted
from a frame immediately become invalid when the original frame is
freed.

For more information, se&ccessing Captured Image Datan page 76.

Chapter 6 Frame Library Reference

FrameAddress() @

Syntax

Return Value

Description

See Also

unsigned long FrameAddress(FRAME __ PX_FAR *f);

The physical address of the frame’s image buffer.
0 on failure.

Returns the physical address of the specified frame’s image buffer. If the
frame’s image buffer doesn’'t have a fixed physical address, the function
fails.

The physical address can not, in general, be converted to a C-style
pointer because of segmentation and paging of the processor's address
space. In order to get a logical address (a pointer) to this buffer, use
FrameBuffer().

This function is useful for writing low-level code, such as device drivers
or memory managers, that need to interact with the frame grabber li
ies.

FrameBuffer()

FrameBuffer()
Syntax

Return Value

Description

See Also

7
—
Q
=
(¢}
C.
o
=
QO
=

<

99uaJaaYy

void __PX_HW *FrameBuffer(FRAME __PX_FAR *f);

The logical address of the frame’s image buffer.
0 if the frame handle is invalid.

Returns a pointer to the start of the data buffer of the specified frame, or
NULL if the data is not in the program's address space. An application
can use this pointer to access a frame’s image data.

FrameAddress()

127

Imagenation

FrameHeight()
Syntax

Return Value

short FrameHeight(FRAME __ PX_FAR *);

The height of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the height of a frame created with any of the Allocate functions.
For more information, se&ccessing Captured Image Datan page 76.

See Also FrameWidth()

FrameWidth()

Syntax short FrameWidth(FRAME __ PX_FAR *f);

Return Value

The width of the frame in pixels.
0 if the frame handle is invalid.

Description Returns the width of a frame created with any of the Allocate functions.
For more information, se&ccessing Captured Image Datan page 76.

See Also FrameHeight()

FrameType()

Syntax short FrameType(FRAME __ PX_FAR *f);

Return Value

Description

See Also

128

The pixel data type of the frame.
0 if the frame handle is invalid.

Returns the pixel data type of the frame created with any of the Allocate
functions. For more information and a list of the pixel data types, see
Allocating and Freeing Framesn page 48 andccessing Captured

Image Dataon page 76.

FrameHeight(), FrameWidth()

Chapter 6 Frame Library Reference

FreeFrame()
Syntax
Return Value

Description

See Also

void FreeFrame(FRAME __ PX_FAR *f);
None.

Returns memory associated with a FRAME handle to the system. You
must free all frames allocated by AllocateAddress(),
AllocateFlatFrame(), and AllocateMemoryFrame() before calling
CloseLibrary()

This function is identical to the FreeFrame() function in the PXC200
Frame Grabber library. Either version of the function can free a frame
allocated by either library.

For more information and a list of the pixel data typesAdleeating and
Freeing Frameson page 48 andccessing Captured Image Datan
page 76.

AllocateAddress() AllocateFlatFrame(), AllocateMemoryFrame()

GetColumn()
Syntax

Return Value

Description

See Also

99uaJaaYy

T
—
Q
=
(¢}
C.
o
=
QO
=

<

short GetColumn(FRAME __ PX_FAR *f, void __ PX_HUGE *buf,
short column);

Non-zero if successful.
0 on failure.

Copies a column of the image stored in frémeo the buffebuf. The
columns are numbered starting with O at the left of the frame. The buffer
is assumed to be an array of the correct type to hold the column of pixels.
If the entire column won't fit in the memory pointed tolyf undefined
behavior and data corruption might result.

GetColumn() will fail if the specified column is outside the boundaries of
the frame, if the frame can’t be read, or if the frame contains planar data.

GetRow(), PutColumn(), PutRow()

129

Imagenation

GetPixel()
Syntax

Return Value

Description

See Also

short GetPixel(FRAME __ PX_FAR *f, void __ PX_HUGE *pixel,
short x, short y);

Non-zero if successful.
0 on failure.

Copies the pixel ax(y) into pixel, where (0,0) is the upper-left corner of

the frame. The parametgixelis assumed to point to a variable or struc-
ture of the correct type to hold the pixelpikel doesn’t point to an

object of sufficient size to hold the pixel, undefined behavior and data
corruption might result. If the frame is planpixel must point to an

object that can hold one pixel from each plane, appended in order (exam-
ple: YUV422P frames require a byte of brightness, followed by a byte of
red, followed by a byte of blue, for a total of 24 bits).

If the point specified byx,y) is outside the boundaries of the frame, or
the frame can’t be read, the function call fails.

PutPixel()

GetRectangle()
Syntax

Return Value

Description

130

short GetRectangle(FRAME __ PX_FAR *f, void __ PX_HUGE *buf,
short x0, short y0, short dx, short dy);

Non-zero if successful.
0 on failure.

Copies a rectangular region of the frahmeto the buffelbuf. The rectan-

gle has upper left cornéx0,y0)in the source frame, widtlx, and height

dy. The buffer is assumed to be an array of the correct type to hold the
row of pixels. If the entire rectangle won't fit in the memory pointed to
by buf undefined behavior and data corruption might result. If the region
is partially outside the boundaries of the frame, GetRectangle() will copy
only the parts of the rectangle that are within the frame.

Chapter 6 Frame Library Reference

GetRectangle() will fail if the specified rectangle is entirely outside the
boundaries of the frame, if the frame can’t be read, or if the frame con-
tains planar data.

See Also PutRectangle()
GetRow()
Syntax short GetRow(FRAME __ PX_FAR *f, void __ PX_HUGE *buf,

Return Value

Description

See Also

short row);

Non-zero if successful.
0 on failure.

Copies a row of the image stored in frahnato the buffebuf. The rows
are numbered starting with O at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of pixels. If the
entire row won't fit in the memory pointed to buf undefined behavior
and data corruption might result.

GetRow() will fail if the specified row is outside the boundaries of thg
frame, if the frame can't be read, or if the frame contains planar dat

GetColumn(), PutColumn(), PutRow()

ELIEIETEY|

T
—
Q
=
(¢}
C.
o
=
QO
=

<

OpenLibrary()
DOS Syntax

Win C Syntax

Win VB Syntax

Return Value

Description

short FRAME_OpenLibrary(FRAMELIB _ PX_FAR *interface,
short sizeof(interface));

short imagenation_OpenLibrary(LPSTR dllname,
void __ PX_FAR¥*interface, short sizeof(interface));

integer OpenLibrary(0,0)

Non-zero if successful.
0 on failure.

Initializes library data structures. It must be called successfully before
any other library functions can be used.

131

Imagenation

See Also

For more information on using OpenLibrary(), $e#ializing and Exit-
ing Libraries on page 44.

CloseLibrary()

PutColumn()
Syntax

Return Value

Description

See Also

void PutColumn(void __ PX_HUGE *buf, FRAME __PX_FAR *f,
short col);

Non-zero if successful.
0 on failure.

Copies the data stored in the bufberfinto a column of framé The col-
umns are numbered starting with O at the left of the frame. The buffer is
assumed to be an array of the correct type to hold the column of pixels. If
bufdoesn’t point to enough data to hold an entire column, undefined
behavior and illegal memory accesses might result.

PutColumn() will fail if the specified column is outside the boundaries of
the frame, if the frame can’t be written, or if the frame contains planar
data.

GetColumn(), GetRow(), PutRow()

PutPixel()
Syntax

Return Value

Description

132

short PutPixel(void _ PX HUGE *pixel, FRAME __ PX FAR *f,
short x, short y);

Non-zero if successful.
0 on failure.

Copies the data pointed to pixel into location(x,y) in the frame, where
0,0 is the upper-left corner of the frame. The paranpetetis assumed

to point to a variable or structure of the correct type to hold the pixel. If
pixel doesn’t point to an object of sufficient size to hold the pixel, unde-
fined behavior and illegal memory accesses might result. If the frame is
planar pixelmust point to an object that holds one pixel from each plane,

Chapter 6 Frame Library Reference

See Also

appended in order (example: YUV422P frames require a byte of bright-
ness, followed by a byte of red, followed by a byte of blue, for a total of
24 bits).

If the point specified byx,y) is outside the boundaries of the frame, or
the frame can’t be read, the function call fails.

GetPixel()

PutRectangle()
Syntax

Return Value

Description

See Also

void PutRectangle(void __ PX_HUGE *buf, FRAME __ PX_FAR *f,
int X0, short y0O, short dx, short dy);

Non-zero if successful.
0 on failure.

Copies a rectangular region from bufberf into the framd. The rectan-
gle goes into the frame with its upper left corngx@ty0) width dx, and
heightdy. The buffer is assumed to be an array of the correct type to
the rectangle of pixels as a series of concatenated linas.dbesn’t
point to enough data to hold the entire rectangle, undefined behaviog
illegal memory accesses might result. If the specified rectangle is pg (3.,
outside the frame boundaries, only the data within the frame bounda
IS written.

M

Jeiqr awe:

s
A

PutRectangle() fails if the specified rectangle is entirely outside the
boundaries of the frame, if the frame can’t be written, or if the frame con-
tains planar data.

GetRectangle()

PutRow()
Syntax

Return Value

short PutRow(void _ PX HUGE *buf, FRAME __ PX_FAR *f,
short row);

Non-zero if successful.
0 on failure.

133

Imagenation

Description Copies the data stored in the bufibesf into a row of framé. The rows
are numbered starting with O at the top of the frame. The buffer is
assumed to be an array of the correct type to hold the row of piXals. If
doesn’t point to enough data to hold an entire row, undefined behavior
and illegal memory accesses might result.

PutRow() will fail if the specified row is outside the boundaries of the
frame, if the frame can’t be written, or if the frame contains planar data.

See Also GetColumn(), GetRow(), PutColumn()

ReadBin()

Syntax short ReadBin(FRAME __ PX_FAR *f, char __ PX_FAR *filename);

Return Value The return values are:
Return Value Description
SUCCESS The file was read successfully.
FILE_OPEN_ERROR The specified file could not be opened.
BAD_READ An error occurred while a file was being read.
BAD_FILE The file being read is not of the correct format.

INVALID_FRAME The frame pointer is invalid or the frame data
can’'t be accessed.

FRAME_SIZE The frame is not large enough to hold the data
being read.
Description Reads the unformatted binary fiileenameand copies it into frame

bufferf. The function stores as much of the contents of the file in the
buffer as will fit. If the type of data in the file does not match the data
type of the frame, the data will interpreted as if it were in the frame’s data
format. For planar frames, each plane is read from the file in order.

If the data in the file is too large to fit in the frame, the function reads as
much data as will fit and returns the FRAME_SIZE error. If the file
doesn’t contain enough data to fill the frame, the entire file is read, the

134

Chapter 6 Frame Library Reference

remainder of the frame is set to zero, and the function returns the
FRAME_SIZE error.

ReadBin() opens and closes the file.

See Also WriteBin()
ReadBMP()
Syntax short ReadBMP(FRAME __ PX_FAR *f, char __PX_FAR *filename);

Return Value

Description

The return values are:

Return Value Description
SUCCESS The file was read successfully.
FILE_OPEN_ERROR The specified file could not be opened.
BAD_READ An error occurred while a file was being read.
BAD_FILE ReadBMP() attempted to read a non-BMP-for
matted file. ‘E %
)
INVALID_FRAME The frame pointer is invalid or the frame data [ejgs
can't be accessed. 88
<
FRAME_SIZE The frame is not large enough to hold the dat
being read.

Reads the image stored in the BMP filenameand copies it into frame
bufferf. Y8 images are read from 8-bit-per-pixel BMP files, RGB images
are read from 24-bit, true-color BMP files, with low-order bits discarded
to match the RGB pixel type format as necessary. Attempting to read
files with any other pixel format results in an error.

If the frame is larger than the image data in the file, the data appears in
the upper-left corner of the frame with the remainder of the frame set to
zero. If the frame is smaller than the image, the upper-left portion of the
image is read into the frame, and the FRAME_SIZE error is returned.

135

Imagenation

ReadBMP() opens and cloddsname

See Also WriteBMP()
WriteBin()
Syntax short WriteBin(FRAME __ PX_FAR *f, char *filename,

Return Value

Description

See Also

136

short overwrite);

The return values are:

Return Value Description
SUCCESS The file was written successfully.
FILE_EXISTS The file already exists, but the function call did

not specify that the file should be overwritten.
FILE_OPEN_ERROR The file could not be opened.
BAD_WRITE An error occurred while a file was being written.

INVALID_FRAME The frame pointer is invalid or the frame’s data
can't be accessed.

Writes the image in frame bufféto the filefilename No information
about the image (height, width, and bits per pixel) is written, only the
pixel values. Data in the file exactly matches the format of the data in
memory. Planar frames are written to the file plane by plane.

If filenamealready exists anoverwriteis zero, the function returns an
error; otherwise, the contentsfdénameare overwritten. WriteBin()
opens and closes the file.

ReadBin()

Chapter 6 Frame Library Reference

WriteBMP()
Syntax

Return Value

Description

See Also

short WriteBMP(FRAME __ PX_FAR *f, char __PX_FAR *filename,
short overwrite);

The return values are:

Return Value Description
SUCCESS The file was written successfully.
FILE_EXISTS The file already exists, but the function call did

not specify that the file should be overwritten.
FILE_OPEN_ERROR The file could not be opened.
BAD_WRITE An error occurred while a file was being written.

INVALID_FRAME The frame pointer is invalid or the frame data
can’t be accessed.

WRONG_BITS The file format does not accept data of the tyj
contained in the frame

Writes the image stored in frame bufféo the filefnamein the BMP
format. Y8 images are written as 8-bits-per-pixel BMP files with a gr:
scale palette. RGB images are written as 24-bit, true-color BMP files
Any alpha channel data is ignored. Attempting to write floating-point
formats, Y16, and YUV formats results in an error.

39U319)9Y
Arelgi] swelH

If filenamealready exists anoverwriteis zero, the function returns an
error; otherwise, the contentsfdénameare overwritten. WriteBMP()
opens and closes the fliename

ReadBMP()

137

Imagenation

138

The VGA Video
Display Library

The VGA Video Display library is a DOS-based VGA display and menu
builder. The library makes it easy to create and display a graphics menu-
based interface for a program. Imagenation used this library to create the
interface for PXCVU and for most of the DOS sample programs.

This library is written in C and comes in several versions:
VIDEO_LB.LIB— Turbo, version 3.0 and later and Borland, version
3.1 and later.

VIDEO_L6.LIB— Microsoft, version 6.0.

VIDEO_LM.LIB— Microsoft, version 7.0 and later.
VIDEO_LW.LIB— Watcom 16-bit compiler version 10.6 and later
VIDEO_FW.LIB— Watcom DOS/4GW version 10.6 and later.

)
@
=2
)
<
C
=3
o
o
2
<

03PIA VOA 3yl

The library provides functions for the following purposes:

» Entering, configuring, and exiting graphics mode
» Selecting fonts and displaying text strings

» Drawing lines and rectangles

» Creating and displaying menus

139

Imagenation

In order to use this VGA Video Display library, your video card and
monitor must be VESA-compatible.

Initializing and Exiting the Library

Before you call any other VGA Video Display functions, you must call
VGALIB_OpenLibrary() . The VGALIB_OpenLibrary() function ini-
tializes the library and sets up the interface for calling functions (for more
information on function calling conventions, $&@gramming in Con

page 41.)

After making the last VGA Video Display function call and before exit-
ing your program, you must cAIIGALIB_CloseLibrary() .
VGALIB_CloseLibrary() frees any resources allocated when the library
was initialized.

Entering and Exiting VGA Graphics Mode

After initializing the VGA Video Display library, but before calling any
other VGA Video Display functions, you must callocateVGA(). The
AllocateVGA() function saves the current display mode, sets the display
to the specified graphics mode, initializes some global data structures,
and returns a pointer to a frame. You can use the frame pointer returned
by AllocateVGA() to operate on the VGA display with functions from
both the VGA Video Display library and the Frame library. You specify
the graphics mode by specifying a resolution, (dx,dy), and a pixel data
type. The valid pixel data types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more infor-
mation on pixel data types, sAtocating and Freeing Framesn

page 48.)

After making the last VGA Video Display function call, but before call-
ing VGALIB_CloseLibrary(), you must calireeFrame(). FreeFrame()

140

Chapter 7 The VGA Video Display Library

resets the display mode to the mode that was active before the call to
AllocateVGA().

Displaying VGA Text and Graphics

The color for both text and graphics can be controlled using the following
library functions:

SetColor(}—Sets the current foreground color to the RGB values
specified.

GetColor()—Returns the R, G, or B value of the currently selected
color.

The basic functions this library provides for displaying text are:

DrawTextString()—Draws a string of text in the current color, begin-
ning at a specified location (X, y).

SetFontSize(3—Selects one of the three fonts: 8x8, 8x14, or 8x16.
GetFontSize(}—Returns the currently selected font.
The library provides the following graphics operations:

DrawLine()—Draws a line in the current color. You specify the tw
endpoints of the line.

o o
Lo
o <
\<O
— >
g <
25
)

DrawRectangle(}—Draws a rectangle in the current color. You sp¢g
ify the coordinates of the upper-left corner and the width and heig

FillRectangle()—Draws a filled rectangle in the current color. You
specify the coordinates of the upper-left corner and the width and

height.

141

Imagenation

The library provides the following functions for locating the current cur-
sor position following a text or drawing operation:

WhereX()—The current horizontal position of the cursor.

WhereY()—The current vertical position of the cursor.

VGA Memory Addressing

Addressing the display memory on a VGA controller often requires
swapping pages of memory. The library functions for the VGA Video
Display library and the Frame library automatically handle any page
swapping. This means that you can’t treat the VGA frame as if it were a
single, contiguous block of memory. You can’t useRremeBuffer()
function to get a pointer to that memory and then operate directly on the
memory using that pointer. Similarly, tAdiasFrame()and
FrameAddress(functions can't be used with frames allocated by
AllocateVGA().

Menu Creation, Configuration, and Display

A menu is a data structure whose contents can be manipulated and dis-
played using th&lenuSelect()JandMenuDisplay() functions. All menus
must be successfully initialized by tMeenuGenerate()function before
they are referenced by any other function; however, some fields in the
menu andmenuitem structures must be initialized by the application
before MenuGenerate() is called. For more informationMes®u Struc-
ture, on page 143 andlenuGenerate()on page 152.

The MenuSelect() function is used to change the currently highlighted
menu option. Its return value indicates which (if any) menu option has
been selected. This return value can be used, for example, to select which
of a variety of functions should be executed.

142

Chapter 7 The VGA Video Display Library

Menu Structures and Types

Menu Structure

struct menu
typedef struct tagmenu

{

short xmin, ymin, dx, dy;

short rows, cols;

short numitems;

char *title;

short highlight;

PIX_RGB32 standardc, standardcbk;
PIX_RGB32 highc, highcbk;
PIX_RGB32 menuc, menucbk;
PIX_RGB32 helpc, helpcbk;
menuitem *data;

This structure defines a menu. All of these values must be initialized
beforeMenuGenerate(s called unless otherwise specified:

xmin, ymin—Define the upper left-hand corner on the screen where
the menu will be drawn.

dx, dy—Define the height and width of the menu.
rows, cols—Define the number of rows and columns in which the

menu items will be organized and displayed; these values are se
the MenuGenerate() function.

=E
LS
Z5
— >
o<
58
)

numitems—Defines the number of items in the menu.

*title —Points to the title, if any, of the menu. The title appears in the
menu title bar. A menu that doesn’t have a title must initialize this
pointer to NULL.

143

Imagenation

highlight—Defines which of the menu items is currently selected.

standardc, standardcbk—Colors used to display all menu features
except menu items and help.

highc, highcbk—Colors used to display the highlighted menu items.

menuc, menucbk—Colors used to display non-highlighted menu
items.

helpc, helpcbk—Colors used to display single-line help messages for
highlighted menu items at the bottom of the screen.

*data—Points to thenenuitem structures and is usually set to point
to an array.

Menuitem Structure

struct menuitem
typedef struct tagmenuitem

{
short xoff, yoff;

short i, j;
char *text;
short hotkey;
char *help;
}menuitem;

This structure defines a menu item. All of these values must be initialized
before callingVlenuGenerate(@n the associated menu, unless otherwise
specified:

xoff, yoff—Define the item's display coordinates relative to the

menu's upper left-hand corner; these values are set by
MenuGenerate().

144

Chapter 7 The VGA Video Display Library

i,]—Define the item's (row, column) coordinates in the menu display;
these values are set by MenuGenerate().

*text—Points to the text string in the menu that describes this item.

hotkey—Defines a hotkey that can be used to select this menu item. If
no hotkey is desired, set this field to zero.

*help—Defines the text string that will be displayed at the bottom of
the screen when this item is selected. The string should describe the
function of this menu item.

Function Reference

AllocateVGA()
Syntax

Return Value

Description

FRAME _ PX_FAR *AllocateVGA(short dx, short dy,
unsigned short type);

A pointer to a frame if successful.
NULL if unsuccessful.

Puts the VGA display into the graphics mode with a resolutiolx gidy
and a pixel type dfype Valid pixel types are PBITS_Y8,
PBITS_RGB15, PBITS RGB16, PBITS RGB24, and PBITS _RGB3
(For more information on pixel data types, #dlecating and Freeing
Frames on page 48.)

If the VGA display doesn't support the requested mode, the function
returns NULL.

You can use the frame pointer returned by AllocateVGA() to operate
the VGA display with functions from both the VGA Video Display
library and the Frame library. This means that you can use Frame library
functions, such aButRectangle(jo draw to the VGA screen.

Areigiq Aejdsi
03PIA VOA 3UL

145

Imagenation

See Also

Programs must call VGALIB_OpenLibrary() and AllocateVGA(), in that
order, before calling any other VGA Video Display library function.

Note:

It is also possible to use the graphics functions from the VGA
Video Display library on a frame allocated witlocateBuffer()
In that case, you must call VGALIB_OpenLibrary(), but not
AllocateVGA().

FreeFrame(), VGALIB_OpenLibrary() , ChangeResolution()

ChangeResolution()

Syntax

Return Value

Description

See Also

146

FRAME __ PX FAR *ChangeResolution(FRAME __ PX FAR *f,
short dx, short dy, unsigned short type);

Non-zero if successful.
0 on failure.

Changes the VGA display to the mode with a resolutiaixofdy and a
pixel type oftype After setting the original display mode with
AllocateVGA(), you can change the display mode by calling
ChangeResolution() with the frame pointegturned by AllocateVGA().

If the resolution is changed successfully, the frémeno longer valid;

you must use the new frame returned by this function for all subsequent
operations. Valid pixel types are PBITS_Y8, PBITS_RGB15,
PBITS_RGB16, PBITS_RGB24, and PBITS_RGB32. (For more infor-
mation on pixel data types, sA#ocating and Freeing Framesn

page 48.)

If the VGA display doesn’t support the requested mode, the function
returns NULL, and the display mode is unchanged.

AllocateVGA()

Chapter 7 The VGA Video Display Library

DisplayMsg()

Syntax void DisplayMsg(menu *m, FRAME __PX_FAR *f, char *msg);
Return Value None.

Description Displays the text string pointed to hysgat the bottom of the display.
See Also DrawTextString()

DrawLine()

Syntax short DrawLine(FRAME __ PX_FAR *f, short x0, short y0, short x1,

short y1);

Return Value The length of the line if successful.
NULL if the specified location is outside the boundaries of the screen.

Description Draws a line on the franférom (x0, yO)to (x1, y1)in the current color.
See Also SetColor()

DrawRectangle()

Syntax short DrawRectangle(FRAME __ PX_FAR *f, short x0, short yO,
short dx, short dy);

Return Value Non-zero if successful.
0 on failure. =
° (0]
Description Draws an unfilled rectangle on the frameith upper-left corner at Z5
(x0, y0)in the current color. The rectangledispixels wide andly pixels = 3<>
tall. 82
< o
See Also FillRectangle(), SetColor()

147

Imagenation

DrawTextString()

Syntax

Return Value

Description

See Also

short DrawTextString(FRAME __PX_FAR *f, short x0, short yO,
char *string);

Non-zero if successful.
NULL if the total length of the string is outside the boundaries of the
screen.

Draws a string of text on the frarhstarting at locatiofx0, yO)in the
current color.

SetColor(), SetFontSize()

FillRectangle()
Syntax

Return Value

short vgalib.FillRectangle(FRAME __ PX_FAR *f, short x0, short y0,
short dx, short dy);

Non-zero if successful.

0 on failure.
Description Draws a filled rectangle on the frarheith upper-left corner gix0, y0)
in the current color. The rectangledis pixels wide andly pixels tall.
See Also DrawRectangle() SetColor()
FreeFrame()
Syntax void FreeFrame(FRAME __ PX_FAR *f);

Return Value

Description

See Also

148

None.

Resets the display to the mode it was in just before AllocateVGA() was
called. Programs must call FreeFrame() after all other VGA Video Dis-
play functions have been called, but before calling
VGALIB_CloseLibrary().

AllocateVGA(), VGALIB_CloseLibrary()

Chapter 7 The VGA Video Display Library

GetBkColor()
Syntax short GetBkColor(FRAME ___PX_FAR *f, short color);

Return Value The current background color if successful.
NULL if color is not supported.

Description Returns the current value foolor for the background, where color is
one of RED, GREEN, BLUE, or ALPHA. Values can range from zero to
255.

See Also SetBkColor()

GetColor()

Syntax short GetColor(FRAME __PX_FAR *f, short color);

Return Value The current foreground color if successful.

NULL if color is not supported.

Description Returns the current value foolor for the foreground, where color is one
of RED, GREEN, BLUE, or ALPHA. Values can range from zero to 255.

See Also SetColor()

GetFontSize()

Syntax short GetFontSize(void); o o

wn
Return Value The currently selected font number on success. = <
NULL if the specified font is not supported. =9
g<
Description Returns the font number of the currently selected font. There are thr a
(o]

fonts available: 8x8, 8x14, and 8x16, numbered 1, 2, and 3 respecti

See Also DrawTextString(), SetFontSize()

149

Imagenation

GetKey()
Syntax

Return Value

short GetKey(void);

The scan code of the key hit.

Description Waits for a key to be depressed, and then returns the scan code for the
key. This library has definitions for the following non-standard ASCII
keys and key combinations: the arrow keys, page up, page down, insert,
delete, home, end, the function keys, and CONTROL + the arrow keys.
The definitions are in the filIDEO.H. The MenuSelect() function
uses some of these special keys, so it should take its input from GetKey().

See Also MenuSelect()

MenuCalcDx()

Syntax short MenuCalcDx(menu *m, FRAME __ PX_FAR *f, short columns);

Return Value

The calculated menu width.

Description Calculates the width in pixels that the menghould be if its items are
arranged in a number of columns equadtumns This calculation is
based on the width of each menu item and the width in pixels of the text
(as defined by SetFontSize()).
For more information, sddenu Structureon page 143, andenuitem
Structure on page 144.

See Also MenuCalcDy(), MenuGenerate() SetFontSize()

MenuCalcDy()

Syntax short MenuCalcDy(menu *m, FRAME __ PX_FAR *f, short columns);

Return Value

Description

150

The calculated menu height.

Calculates the height in pixels that the manshould be if its items are
arranged in a number of columns equadtumns This calculation is

Chapter 7 The VGA Video Display Library

based on the number of items and the height in pixels of the text (as
defined by SetFontSize()).

For more information, sddenu Structureon page 143, andenuitem
Structure on page 144.

See Also MenuCalcDx(), MenuGenerate() SetFontSize()

MenuDisplay()

Syntax short MenuDisplay(menu *m, FRAME __ PX_FAR *f);

Return Value Non-zero if successful.

0 on failure.

Description Displays menum on the VGA screen at the location specified by the x
and y values in the menu structure. It erases the area where the menu is t
be drawn, draws a rectangle to frame the menu, displays the menu
options and title, displays (at the bottom of the screen) the help text for
the currently-selected menu option, and highlights the currently selected
menu option.

For more information, sédenu Structureon page 143, andenuitem
Structure on page 144.

See Also MenuErase()

MenuErase()

Syntax void MenuErase(menu *m, FRAME __ PX_FAR *f);

Return Value

Description

None.

Areigiq Aejdsig
03PIA VOA 3UL

Erases the mema from the VGA display by calling
FillRectangle(menu->xmin, menu->ymin, menu->dx, menu->dy,
colors.standardbk). It does not check, before erasing this area, to see
whether the menu was actually displayed on the VGA monitor.

151

Imagenation

For more information, sddenu Structureon page 143, andenuitem
Structure on page 144.

See Also MenuDisplay()

MenuGenerate()

Syntax short MenuGenerate(menu *m, FRAME _ PX_FAR *f);

Return Value Return values are:
Return Value Description
0 Menu successfully initialized.
MENU_BOUNDS_ERR Menu screen coordinates off screen or other-

wise invalid.
MENU_WIDTH_ERR Menu not wide enough to hold a menu item.

MENU_HEIGHT_ERR Menu not tall enough for specified width and
number of menu items.

Description Sets up some internal data in menvequired by the menu functions. In
order for MenuGenerate() to function properly, several items in the menu
structure must be initialized before MenuGenerate() is called: xmin,
ymin, dx, dy, numitems, *data, and *title. (*titte may be initialized to
NULL if you don't want your menu to have a title, but it can’t be left un-
initialized.)

The MenuGenerate() function assumes that all menu item names have the
same number of characters. The function calculates the number of rows
for the displayed menu based on the height of the menu and of the indi-
vidual characters, and then calculates the number of columns based on
the number of rows and number of items. The MenuGenerate() function
will fail under the following circumstances:

* The menu coordinates are off-screen.

* With the given origin, the menu is too wide to fit on the screen.

152

Chapter 7 The VGA Video Display Library

* The menu is not wide enough, based on the width of each menu item
name and the number of columns.

* The menu is not tall enough, based on the width in pixels of the menu
and the number of menu items.

The return value of MenuGenerate() should always be checked for errors
before menumis used with any other VGA Video Display function.

For more information, sddenu Structureon page 143, andenuitem
Structure on page 144.

See Also MenuCalcDx(), MenuCalcDy(), MenuDisplay()

MenuSelect()

Syntax short MenuSelect(menu *m, FRAME __ PX_FAR *f, short key);
Return Value Return values are:
Return Value Description
-1 No selection made.
0 to m->numitems - 1 Index of selected menu item.
Description Changes the highlighted menu option depending on the key that is input,

or returns the index of the highlighted menu item if the key is RETUF
or a defined hotkey for that menu item. The following keys have spe
meaning to MenuSelect():

Left and Right Arrows— Move selection left or right by one colum

Areiqi Aejdsic;
O3PIA VOA 3yL

Up and Down Arrows—Move selection up or down by one row.

PAGE UP and PAGE DOWN—Move selection to top or bottom of
current column.

153

Imagenation

HOME and END—Move selection to first or last menu item.

For more information, sddenu Structureon page 143, andenuitem
Structure on page 144.

SetBkColor()

Syntax short SetBkColor(FRAME __ PX_FAR *f,
PIX_RGB32 _ PX_FAR *color);

Return Value Non-zero if successful.
NULL if color is not supported.

Description Sets the current background color to the RGB values specified. For each
color component, values can range from zero to 255.

See Also GetBkColor()

SetColor()

Syntax short SetColor(FRAME __ PX_FAR *f,
PIX_RGB32 _ PX_FAR *color);

Return Value Non-zero if successful.
NULL if color is not supported.

Description Sets the current foreground color to the RGB values specified. For each
color component, values can range from zero to 255.

See Also GetColor()

SetFontSize()

Syntax short SetFontSize(short font_number);

Return Value Non-zero if successful.

NULL if the specified font is not supported.

154

Chapter 7 The VGA Video Display Library

Description

See Also

Sets the font used by DrawTextString(f@at_numberThere are three
fonts available: 8x8, 8x14, and 8x16, witint_number, 2, and 3
respectively. The default (set by AllocateVGA()) is the 8x16 font.

AllocateVGA(), DrawTextString()

VGALIB_CloseLibrary()

Syntax
Return Value

Description

See Also

void VGALIB_CloseLibrary(VGALIB _ PX_ FAR *interface);
None.

Releases any resources allocated by VGALIB_OpenLibrary(). Programs
must call VGALIB_CloseLibrary() before exiting.

VGALIB_OpenLibrary()

VGALIB_OpenLibrary()

Syntax

Return Value

short VGALIB_OpenLibrary(VGALIB _ PX_FAR *interface,
short sizeof(interface));

Non-zero if successful.

0 on failure.
Description Initializes the library and fills in thmterfacestructure, wherenterface
is the name you will use for calling other library functions (for more
information on calling conventions, sBeogramming in Con page 41). o o
wn
See Also VGALIB_CloseLibrary() S 2
<@
- >
g <
WhereX() g2
< o
Syntax short WhereX(void);
Return Value The horizontal position of the cursor.
-1 on failure.

155

Imagenation

Description Returns the horizontal position, in pixels, of the cursor following a
DrawLine(), DrawRectangle(), or DrawTextString() function call.

See Also WhereY()

WhereY()

Syntax short WhereY (void);

Return Value The vertical position of the cursor.
-1 on failure.

Description Returns the vertical position, in pixels, of the cursor following a

DrawLine(), DrawRectangle(), or DrawTextString() function call.
See Also WhereX()

156

Cables and
Connectors

This chapter includes information on making cables for the PXC200
frame grabber.

Standard PCI and CompactPCI Cables

The versions of the PXC200 for the standard PCI bus and for the Com-
pactPClI bus both use 26-pin D and S-video connectors. You can use
commercially-available S-video cables with the S-video connector or you

can make your own cables. Pinout information for both connectors fol-
lows.

157

Imagenation

S-Video Connector

Pinouts for the S-video connector are shown below:

Pin 4 Pin 3
Chroma 1 Luma 1

Pin 2 Pin 1
Ground Ground

26-pin D Connector

Pinouts for the 26-pin D connector on the PXC200 are shown below, as
viewed from the end of the board:

Pin 9 Pin1

0O 000 O0O0OO0O0O O
Pin 18 0O 00000 O0O0o0 Pin 10
0O 000 00 0 0

Pin 26 Pin 19

158

Chapter A Cables and Connectors

Pin Description Pin Description
1 YO 14 Digital Ground
2 Y1l 15 Trigger O
3 Y2 16 Trigger 1*
4 Y3 17 Trigger 2*
5 Reserved 18 Trigger 3*
6 Horizontal Sync Drive* 19 Co*

7 Vertical Sync Drive* 20 C1
8 Digital Ground 21 Cc2*
9 +12 V DC Out 22 C3*

10 Analog Ground O 23 Strobe 0*
11 Analog Ground 1 24 Strobe 1*
12 Analog Ground 2 25 Strobe 2*
13 Analog Ground 3 26 Strobe 3*

* These signals are available only on versions of the PXC200 with the
optional Control Package.

Connecting the +12V Output

To activate the +12V output on standard PCI bus versions of the
PXC200, you must connect the board to the computer’s power supply.
You make this connection using the same type of connectors used to
power the disk drives.

PC/104-Plus Cables

The PC/104-Plus configuration of the standard PXC200 uses a 20-pin
male connector. The version of the PXC200 that includes the optional
Control Package has an additional 24-pin male connector. Both connec-

159

Imagenation

tors are IDC-compatible. The pinouts for these connectors are given in
the following sections.

20-Pin Connector

Connector J5 is a 20-pin IDC-compatible connector:

Pin Description Pin Description
1 Ground 2 YO
3 Ground 4 Y1l
5 Ground 6 Y2
7 Ground 8 Y3
9 Ground 10 Co
11 Ground 12 Cil
13 Ground 14 Cc2
15 Ground 16 C3
17 Ground 18 Trigger O
19 12 V Ground 20 +12 V DC Out

For each of the even-numbered pins, the corresponding ground pin is
shown on the same line of the table.

160

Chapter A Cables and Connectors

24-Pin Connector

On versions of the PXC200 with the optional Control Package, connector
J10 is a 24-pin IDC-compatible connector with the following pinouts:

Pin Description Pin Description
1 Ground 2 Trigger O
3 Ground 4 Trigger 1
5 Ground 6 Trigger 2
7 Ground 8 Trigger 3
9 Ground 10 Strobe 0
11 Ground 12 Strobe 1
13 Ground 14 Strobe 2
15 Ground 16 Strobe 3
17 Ground 18 Horizontal Sync Drive
19 Ground 20 Vertical Sync Drive
21 Ground 22 Reserved
23 Ground 24 Reserved

For each of the even-numbered pins, the corresponding ground pin is
shown on the same line of the table.

161

Imagenation

162

Hardware
Specifications

This appendix lists specifications for the PXC200 hardware. The board is
available with a standard set of features and with an optional Control
Package.

Standard Features

Input video formats NTSC, PAL, SECAM, S-video.

Input video signal 1V peak-to-peak, 78.

Resolution NTSC.:640 x 480 pixels
PAL/SECAM:768 x 576 pixels.

Sampling jitter Maximum of £4 ns relative to horizontal
synchronization (for a stable source).

Output formats Color: YCrCb 4:2:2; RGB 32, 24, 16,
and 15.

Monochrome: Y8

External trigger Software programmable edge or level
sensitivity and polarity.

163

Imagenation

Over-voltage protection All inputs and outputs are diode pro-

tected.
Form factor PCl short card: 174.6 x 106.7 mm
6.875 x 4.2 in.
PC/104 Plus module: 91.4 x 96.5 mm
3.4x3.6in.
CompactPCI 3U card: 100 x 160 mm
3.94x 6.4 in.

Video noise < 1 LSB (least significant bit) RMS.

Power +5 VDC.

Camera power +12 VDC output.

Video multiplexer Four video inputs, only one of which
can be S-video; all four can be compos-
ite video.

Operating temperature 0° Cto 60° C.

Warranty One-year limited parts and labor.

Optional Control Package

The optional Control Package adds the following features to the standard
board.

Digital 1/0 Four general-purpose TTL-level input
lines and four general-purpose TTL-
level output lines replace the single trig-
ger on the standard product. All lines are
software programmable. Input lines are
pulled up to 5V and can compensate for
trigger bounce.

164

Chapter B Hardware Specifications

Sync drive signals Vertical and horizontal sync drive out-
puts. Signals are 5V, active low.

Strobe inhibit Output lines programmed to fire strobe
pulses can be inhibited during CCD
transfer time by setting a programmable

holdoff period.

DC restore All four video inputs have DC restora-
tion.

Video multiplexer All four video inputs can accept either

composite video or S-video.

165

Imagenation

166

Block Diagram C

A block diagram of the PXC200 board is shown on the following page.

167

Imagenation

Trigger 0 —»
Trigger 1 —»
Trigger 2 —»
Trigger 3 — I/O
Strobe 0 <« Buffers
Strobe 1 - Video 0 — -
. Anti-Alias,
Strobe 2 - Video 1 — Clamp,
Strobe 3 Video 2 — & MUX
Horizontal Sync e)
2 y Video 3 —»
Vertical Sync =
A Chroma Luma
g
Sync
Y Detect Y
y Digitize,
1/0 Control Decode,
Processor & Scale
lvuv422dma
A
Color Space
& Format
Convert
\/ l
I/O Access PC;'
Port < - Engine
PCI BUS

168

Index

Numerics

20-pin connectol60
24-pin connectol61
26-pin D connectot58
386MAX 15

A

accessing frame grabbetg
addresses
logical 76
physical50, 77
adjusting the video imadgst
AGC 58
allocating frame grabbedy
multiple frame grabber47, 83
AUTOEXEC.BAT file 17
automatic gain contrd@8

B

binary files78

block diagraml67-168
BMP files 77

board diagrami 67-168

board revision numbe® 74
board serial numbefs
brightnes$4

C

cablesll, 157161

CACHE flag66

camera input§2

capture resolutioB8-60

capturing image51-52

comb filter57, 58

CompactPCI bus
cablesl57

compiling program84-40

CompuServe addregs

CONFIG.SYS filel5

connectord 1, 157161

continuous acquire mod¥

contrastt4

core funtion57

corrupt image datal

counting video field&4

cropping image$9

customer suppo6-27

169

Imagenation

170

D

digital /0 6, 66

direct memory acces

directories22

DLLs
error loading23
FRAME_16.DLL 36, 37
FRAME_32.DLL38, 39
PXC2_16.DLL36, 37
PXC2_95.DLL38
PXC2_NT.DLL39
Video Display78
VIDEO_16.DLL 36, 37,79
VIDEO_32.DLL 38, 39, 79
Windows 3.136, 37
Windows 9537, 38
Windows Video Display DLL79
Windows NT39

DMA 50

DOS Install prograni6

E

EITHER flag66
EMM386 15
environment variable¥7, 24, 29
errors

error loading DLL23

error loading VxD23
execution timings0-65
exiting libraries44, 140
external trigger$

FIELDO flag 66

FIELD1 flag 66

files
AUTOEXEC.BAT 17
BIN format78
binary 78
BMP format77

CONFIG.SYS15
FRAME_V4.BAS42
PXC2_V4.BAS42
PXCVU.HLP29
PXCVU.INI 29
reading and writingd7
SYSTEM.INI17, 18
VIDEO_16.BAS79
VIDEO_32.BAS42, 79
flags61, 63, 64, 66
frame buffers
error trying to allocatd9
memory allocatiorl7
frame grabber handl€¥
FRAME.H file 35, 36, 37, 38, 39
FRAME_16.DLL 36, 37
FRAME_32.DLL 38, 39
FRAME_FW.LIB library 35
FRAME_LG6.LIB library 35
FRAME_LB.LIB library 35
FRAME_LM.LIB library 35
FRAME_LW.LIB library 35
FRAME_V4.BAS file42
freeing frame grabbers?
freeing memoryi8
function flags66
function referenc&1-120, 121-137,
145-156
function timing60-65
functions
AliasFrame()122
AllocateAddress(p0, 123
AllocateBuffer()48, 82
AllocateFG()47, 83
AllocateFlatFrame(y7, 124
AllocateMemoryFrame(J6, 124
AllocateVGA() 140 145
ChangeResolution()46
CheckError()51, 74, 75, 84
CloseLibrary()44, 45, 84, 125
CopyFrame()y6, 125
DisplayMsg()147

Index

DrawlLine()141, 147
DrawRectangle(141, 147
DrawTextString()141, 148
ExtractPlane(yY6, 126
FillRectangle()141, 148
FireStrobe()72, 85
FRAME_CloseLibrary(¥5
FRAME_OpenLibrary(¥15
FrameAddress(J7, 127
FrameBuffer()76, 127
FrameHeight(¥6, 128
FrameType(¥6, 128
FrameWidth()76, 128
FreeFG(M47, 85
FreeFrame(39, 85, 140
GetBkColor()149
GetBrightness(p5, 86
GetCamera(b2, 86
GetChromaControl(%8, 87
GetColor()141, 149
GetColumn()76, 129
GetContrast(p4, 87
GetDebounce(37
GetDoubleStrobe(J3, 88
GetFieldCount(p4, 88
GetFontSize(L41, 149
GetHeight()59, 88
GetHoldoffMask()73, 89
GetHoldoffStart()73, 89
GetHoldoffwWidth()73, 89
GetHue()55, 90
Getlnterface(p0
GetlOType()67, 90
GetKey()150
GetlLeft()59, 91
GetLumaControl(p7, 91
GetPixel()76, 130
GetRectangle(J6, 130
GetRow()76, 131
GetSaturation(p5, 92
GetStrobePeriod(J3, 92
GetSwitch()70, 93

GetSyncThreshold@3
GetTop()59, 93
GetVideoDetect(p3, 94
GetVideoLevel(}6, 94
GetWidth()59, 94
GetXResolution(p5
GetYResolution(p5
Grab()51, 95
GrabContinuous(31, 96
imagenation_CloseLibrary@4, 84,
125
imagenation_OpenLibrary@4, 98,
131
immediate63
IsFinished()97
KillQueue()63, 97
MenuCalcDx()150
MenuCalcDy()150
MenuDisplay()142 151
MenuErase (151
MenuGenerate(}42, 152
MenuSelect(L42 153
OpenLibrary()44, 45, 98, 131
PutColumn()76, 132
PutPixel()76, 132
PutRectangle(y6, 133
PutRow()76, 133
PXC200_CloseLibrary(@5
pxc200_CloseLibrary(4, 125
PXC200_OpenLibrary@5
pxc200_OpenLibrary(®8, 131
pxPaintDisplay()78
pxSetWindowSize(y8
gqueueddl, 63
ReadBin()78, 134
ReadBMP()77, 135
ReadlO()68, 72, 98
ReadProtection(}5, 99
ReadRevision(y4, 99
ReadSerial(Y5, 99
Reset()74, 100
SetBkColor()154

171

Imagenation

172

SetBrightness($5, 100
SetCamera(2, 100
SetChromaControl(8, 101
SetColor()141, 154
SetContrast(p4, 102
SetDebounce(}02
SetDecisionPoint(1 03
SetDoubleStrobe(j3, 104
SetFieldCount(p4, 104
SetFontSize(141, 154
SetHeight()9, 105
SetHoldoffMask()73, 105
SetHoldoffStart()73, 106
SetHoldoffwidth()73, 106
SetHue()5, 107
SetlOType()67, 107
SetlLeft()59, 108
SetLumacControl(p7, 108
SetPixelFormat(p1, 110
SetSaturation($5, 110
SetStrobePeriod()3, 111
SetTop()59, 111
SetVideoDetect(p3, 112
SetVideolLevel(p6, 113
SetWidth()59, 113
SetXResolution(b9, 114
SetYResolution(b9, 114
SwitchCamera(y1, 114
SwitchGrab()70, 115
SyncStrobe(y2
TriggerStrobe()y2, 116
VGALIB_CloselLibrary()140, 155
VGALIB_OpenLibrary()140, 155
VideoType()52, 116
Wait() 63, 117
WaitAllEvents()69, 118
WaitAnyEvent()69, 118
WaitFinished(}40, 62, 119
WaitVB() 40, 63, 119
WhereX()142 155
WhereY()142 156
WriteBin() 78, 136

WriteBMP() 77, 137
WritelmmediatelO()71, 120

G

gamma correctiob7

genlocking video sources 7, 53

grabbing image51-52
incomplete image capturég
invalid data in buffeb2

grayscale noisd

H

handlesA7
hardware installation2-14
hardware protection kegs
hardware serial numb&b
hardware specifications63-165
header file2
DOS35
FRAME.H 35, 36, 37, 38, 39
PXC200.H35, 36, 37, 38, 39
VIDEO.H 35
VIDEO_16.H36, 37,79
VIDEO_32.H38, 39, 79
Visual Basic42, 79
Watcom DOS/4GWB5
Windows 3.136

Windows Video Display DLL79

Windows 3.136

Windows 9537, 38

Windows NT39
high-frequency gain filte57
horizontal sync output3
hue55

ILIB_32.LIB library 38, 39
ILIB_32B.LIB library 38, 39
ILIB_LB.LIB library 36, 37

Index

ILIB_LM.LIB library 36, 37
ILIB_MB.LIB library 36, 37
ILIB_MM.LIB library 36, 37
ILIB_SB.LIB library 36, 37
ILIB_SM.LIB library 36, 37
image adjusments4

image cropping9

image resolutio®8-60
image scaling9
IMAGENATION variable17, 24, 29
IMMEDIATE flag 63, 64, 66
immediate function§3
initializing libraries44, 140
input/output6, 66

inputs, videdb2

INSTALL program16
installation11-27

installing the hardwar&2-14
installing the softward5-22
Internet addresa7

interrupt handlerg5
interrupts46

IRQ conflicts23, 25, 46

J

J10 connectoi61
J5 connectot 60

L

languages, programmintp-43

libraries
Borland, DOS35, 139
compiling and linking34-40
DOS and DOS/AGV@5, 139
error when initializingi6
exiting 44, 140
FRAME_FW.LIB 35
FRAME_L6.LIB 35
FRAME_LB.LIB 35

FRAME_LM.LIB 35
FRAME_LW.LIB 35
function referenc81-120, 121-137,
145-156

ILIB_32.LIB 38, 39
ILIB_32B.LIB 38, 39
ILIB_LB.LIB 36,37
ILIB_LM.LIB 36, 37
ILIB_MB.LIB 36, 37
ILIB_MM.LIB 36, 37
ILIB_SB.LIB 36, 37
ILIB_SM.LIB 36, 37
initializing 44, 140
Microsoft, DOS35, 139
PXC2_FW.LIB35
PXC2 L6.LIB35
PXC2_LB.LIB35
PXC2_LM.LIB 35
PXC2_ LW.LIB35
troubleshootingl6
VGA Video Display139-156
video displayl39
VIDEO_16.LIB 36,37, 79
VIDEO_32.LIB 38,39, 79
VIDEO_FW.LIB 35, 139
VIDEO_L6.LIB 35, 139
VIDEO_LB.LIB 35,139
VIDEO_LM.LIB 35,139
VIDEO_LW.LIB 35,139
VIDEO32B.LIB 38, 39, 79
Watcom35, 139
Windows 3.136
Windows 9537, 38
Windows Video Display DLL79
Windows NT39

linking programs34-40

logical addresses6

low filter 56

low-color removab8

luma control$6

173

Imagenation

174

M

memory
allocation variable 7
freeing48
managerd5
requirementd5, 46
menusl39-156
monochrome dete&8
monochrome video contro&6
MSD programl5
multitasking and multithreaded operating
systems39

N

notch filter57
NTSC52, 60

O

operating system34-40
DOS and DOS/4GVg4
multitasking and multithreadezb
Windows 3.136
Windows 9537, 38
Windows NT39

P

PAL/SECAM 52, 60

PATH variablel7

PC/104-Plus bug
cables159

PCI BIOS46

PCI busb, 75
cablesl57

peak filter57

performance, 75

physical addressés0, 77

pixel depth in PXCVU prograr@4

pixel jitter 3
pointers42, 76
programming33-75
programming language®)-43
programs

compiling and linking34-40

directory locatior22

INSTALL 16

MSD 15

PXCDRAW19

PXCDRAW29

PXCREVY, 23

PXCVU 23, 29-32

SETUP16

VGACOPY9
protection key, hardwargs
purging the function queug3
PX2 directory22
PXC2.VXD virtual device drivel.7, 36,

37, 38,39

PXC2_16.DLL36, 37
PXC2_95.DLL38
PXC2_FW.LIB library35
PXC2_L6.LIB library35
PXC2_LB.LIB library35
PXC2_LM.LIB library 35
PXC2_LW.LIB library35
PXC2_NT.DLL39
PXC2_V4.BAS file42
PXC200.H file35, 36, 37, 38, 39
PXCDRAW1 progran®
PXCDRAW?2 progran®
PXCREYV progran®

troubleshootin@3
PXCVU progran29-32

pixel depth settin@4

troubleshootin@3
PXCVU.HLP file 29
PXCVU.INI file 29

Index

QEMM 15
QUEUED flag61, 64, 66
queued function61, 63

R
registries
Windows 9519
Windows NT21
requesting access to frame grabbkts
resolution58-60
revision numbers, 74

S

sample programs, see programs
saturatiorb5
scaling image$9
security75
serial number, hardwait
SETUP program 6
SetVideoDetect(p3
SINGLE_FLD flag66
software
directories22
installation15-22
security75
update27
source code directory locati@2
specificationsl63-165
StaticVxD registry keyl9
structures
menul42 143
menuitem142, 144
support26-27
S-video color signab7
S-video connectot58
sync signal outputg3
synchronizing program execution to
video63

system filesl7
SYSTEM.INI file 17, 18

T

technical suppor26-27
timing, function executio®0-65
triggers6, 67
troubleshooting
AllocateBuffer()49
AllocateFG()47
AllocateVGA failed24
broken lines in vide@4
can't allocate a frame grabbér
can't allocate frame49
corrupt image datal
error loading DLL23
error loading VxD23
GetColumn(), GetRectangle(),
GetRow()76
grab functions faib1
grabbing image52
image is all blacls1
incomplete imag&2
invalid data in buffeb2
IRQ conflicts23, 25, 46
library fails to initialize46
OpenLibrary()46
PutColumn(), PutRectangle(),
PutRow()76
PXCREYV progran®3
PXCVU program?23
slow video display performan@s
snow in vided24
Windows25

U

updates, softwarg?
user interfacd 39-156
utility programs, see programs

175

Imagenation

176

Vv

vertical sync outpuf3
VESA display driver4
VGA Video Display libraryl39-156
VGACOPY programd
video
automatic gain contrd@8
brightness adjustmes?
comb filter57, 58
contrast adjustmeri4
core functiorb7
counting video field&4
formats52
gamma correctiob7
high-frequency gain filtes7
hue adjustmert5
inputs52
level adjustmenb6
low filter 56
monochrome dete&8
notch filter57
peak filter57
processing adjustmentgl
saturation adjustme®b
S-video formab7
Video Display DLL78
VIDEO.H file 35
VIDEO_16.BAS file79
VIDEO_16.DLL 36, 37,79
VIDEO_16.H file36, 37, 79
VIDEO_16.LIB library36, 37, 79
VIDEO_32.BAS file42, 79
VIDEO_32.DLL 38, 39,79
VIDEO_32.H file38, 39, 79

VIDEO_32.LIB library38, 39, 79
VIDEO_FW.LIB library 35, 139
VIDEO_L6.LIB library 35, 139
VIDEO_LB.LIB library 35, 139
VIDEO_LM.LIB library 35, 139
VIDEO_LW.LIB library 35, 139
VIDEO32B.LIB library 38, 39, 79
virtual device driverd 7, 36, 37, 38, 39,
44

Visual Basic

declarationgl2

End buttord?2

programming tipgl1l

Video Display DLL78
VxD 17, 36, 37, 38, 39, 44

error loading23

wW

Windows 3.1
programming36
SETUP prograni 6
software installatiorl5
troubleshootin@3, 25

Windows 9537
programming37, 38
registry change$9
software installatiori8
troubleshootin@3, 25

Windows NT
programming39
registry changegl
software installatior20
troubleshootin@3, 25

	Introduction
	Precision Capture Hardware
	Video Inputs and Formats
	Video Capture Modes and Resolution
	Image Capture Modes
	Capture Resolution

	Real-Time Image Data Transfer
	PCI Bus Master Design
	Selectable Destination for Image Captures

	I/O Features
	Trigger Input
	Optional I/O

	Programming Libraries and DLLs
	The PXCVU Program
	Utility Programs
	PXCREV
	VGACOPY

	Next Steps...

	Installing Your Frame Grabber
	Do You Need a Cable?
	Standard PCI and CompactPCI Cables
	PC/104-Plus Cables

	Installing Your Board
	Installing the Software
	DOS, DOS/4GW, and Windows�3.1 Software Installatio...
	Windows 95 Software Installation
	Windows�NT Software Installation
	PXC200 Software Directories

	Troubleshooting
	Error Loading DLL
	Error Loading VxD
	Problems Running PXCVU or PXCREV
	Slow Video Display Performance
	Windows Hangs or Crashes on Boot
	Windows�NT-Specific Problems

	Technical Support

	The PXCVU Application
	Setting Up PXCVU
	Starting PXCVU
	Running PXCVU with More Than One Frame Grabber

	Using PXCVU

	Programming the PXC200
	Library Organization
	Operating System Specifics
	DOS Programming
	Windows 3.1 Programming
	Windows�95 Programming
	Windows�NT Programming
	Programming in a Multithreaded, Multitasking Envir...

	Programming Language Specifics
	Programming in C
	Visual Basic Programming

	Typical Program Flow
	Initializing and Exiting Libraries
	C and�Windows Programs
	C and DOS Programs
	Visual Basic and�Windows Programs
	Troubleshooting OpenLibrary()

	Requesting Access to Frame Grabbers
	Setting the Destination for Image Captures
	Allocating and Freeing Frames
	Sending Images Directly to Another PCI Device

	Grabbing Images
	Selecting Video Inputs
	Counting Fields
	Adjusting the Video Image
	Setting Contrast and Brightness
	Setting Hue and Saturation
	Setting the Video Level
	Setting Luma Controls
	Setting Chroma Controls

	Scaling and Cropping Images
	Scaling Images
	Cropping Images

	Timing the Execution of Functions
	Queued Functions
	Synchronizing Program Execution to Video
	Purging the Queue
	Immediate Functions
	Function Timing Summary

	Using Flags with Function Calls
	Digital I/O
	Controlling the Input Lines
	Controlling the Output Lines

	Horizontal and Vertical Sync Drive Signals
	Error Handling
	Reading Frame Grabber Information
	Board Revision Number
	Hardware Protection Key
	Serial Number

	Frame Grabbing and PCI Bus Performance
	Accessing Captured Image Data
	Frame and File Input/Output
	BMP Files
	Binary Files

	Using the Video Display DLL

	PXC200 Library Reference
	Frame Library Reference
	The VGA Video Display Library
	Initializing and Exiting the Library
	Entering and Exiting VGA Graphics Mode
	Displaying VGA Text and Graphics
	VGA Memory Addressing

	Menu Creation, Configuration, and Display
	Menu Structures and Types
	Function Reference

	Cables and Connectors
	Standard PCI and CompactPCI Cables
	S-Video Connector
	26-pin D Connector
	Connecting the +12V Output

	PC/104-Plus Cables
	20-Pin Connector
	24-Pin Connector

	Hardware Specifications
	Standard Features
	Optional Control Package

	Block Diagram
	Index

